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Symmetries in Mathematical Programming

Solution and analysis of mathematical programming problems may be simpli�ed when these problems are symmetric
under appropriate linear transformations. Knowledge of the symmetries may help:

� reduce the problem dimension,

� cut the search space by symmetry-breaking linear cuts

� obtain new local optima from the ones previously found

� develop problem-speci�c metaheuristics

2



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Previous Research

In the case of continuous domain:

� K.Gatermann and P.A. Parrilo "Symmetry groups, semide�nite programs, and sums of squares" (2004)

� A.Costa, P. Hansen and L. Liberti "On the impact of symmetry-breaking constraints on spatial Branch-and-
Bound for circle packing in a square" (2013)

� G.Kouyialis, X. Wang, and R. Misener �Symmetry detection for quadratic optimization using binary layered
graphs� (2019)

� etc.

In integer programming:

� Ð. Þ. Ñèìàí÷åâ �Ëèíåéíûå ñèììåòðèè ìíîãîãðàííèêà ïàðîñî÷åòàíèé è àâòîìîðôèçìû ãðàôà� (1996)

� Î.Â. ×åðâÿêîâ �Àôôèííûå ñèììåòðèè ìíîãîãðàííèêà, ñèñòåìû íåçàâèñèìîñòè ñ åäèíè÷íûì ñäâèãîì�
(1999)

� M. Fran�cois �Symmetry in integer linear programming� (2010)

� À. À. Êîëîêîëîâ, Ò. Ã. Îðëîâñêà , Ì. Ô. Ðûáàëêà, �Àíàëèç àëãîðèòìîâ öåëî÷èñëåííîãî ïðîãðàììèðîâàíè
ñ èñïîëüçîâàíèåì -ðàçáèåíè è óíèìîäóë ðíûõ ïðåîáðàçîâàíèé� (2012)

� R. B�odi, K. Herr and M. Joswig, M. �Algorithms for highly symmetric linear and integer programs� (2013)

� etc.

... and more papers on symmetries in MIP problems.
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Our Motivation

The problem of maximizing the radiation
of an antenna array in a given direction

x
T
Gx → max,

0 ≤ x
T
H

(1)
x ≤ 1,

...

0 ≤ x
T
H

(n)
x ≤ 1,

x ∈ R2n.

(1)

� G is symmetric positive semi-de�nite,

� each matrix H(k) is symmetric with

� two identical positive eigenvalues,

� two identical eigenvalues less or
equal to zero,

� the rest of the eigenvalues are
equal to zero

� all eigenvalues of
Hsum :=

∑n
k=1 H

(k) are positive.

Objective function symmetry:
phase-independence of the radiation
power �ux.
Feasible domain symmetry: phase-
independence of real power �ow in each
feeder of the antenna system.

In terms of (18), this symmetry is invari-
ance w.r.t. rotation by some angle α in
each 2-dimensional subspace (xi, xn+i).
It can be utilized to reduce the search
space dimensionality, e.g. by �xing
x2n = 0.

The problem has even more symmetries:
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What is symmetry group of the quadratic programming problem

The problem:
xTAx → max
xTB1x ≤ 1
. . .
xTBMx ≤ 1

(2)

Tranformations:

x → y = Px , (3)

constitute group G of symmetry if
yTAy → max
yTB1y ≤ 1
. . .
yTBMy ≤ 1

(4)
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Symmetry Group of a Set of Matrices

In some cases, it may also be useful to �nd the symmetry group of the set of constraints only or the symmetry

group of the set of matrices Bi.

We denote the set of given symmetric matrices B1, . . . , BM by B.

The set of symmetries of the constraints is closely related but not necessarily identical to the set of those

invertible linear transformations, which map bijectively the feasibility domain of the problem

D := {x ∈ RN : xTBix ≤ 1, i = 1, . . . ,M}

onto itself.

The symmetry group of the set of constraints G′ may bea a subgroup in the symmetry group of invertible linear

transformations of the domain D.

aThis happens e.g. if there are several �inactive� constraints.
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De�nition 1. B is called congruent invariant (or invariant for short) under the transformation

B → P TBP (5)

with a non-degenerate matrix P , if {P TBP : B ∈ B} = {B}.
We denote the group of such matrices as GB. Clearly, under a transformation B → P TBP, some of the matrices
from B may be mapped one into another, however not all of the permutations can be obtained this way.

One of the invariants of the transformation (5) is the inertia of a matrix B, de�ned as the ordered triple:

1) the number of positive eigenvalues of B,

2) the number of negative eigenvalues of B, and

3) the number of zero eigenvalues of B.

So it is only possible to permute matrices with equal inertia and the whole set B splits into equivalence classes of
matrices with equal inertia.

De�nition 2. An I-class is a maximal by inclusion subset BI
k of B, consisting of matrices with equal inertia.

De�nition 3. A sum of all matrices belonging to one or several I-classes is called an invariant matrix of
I-type.

Obviously for such a matrix BI

P TBIP = BI (6)
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Condition I: at least one invariant matrix BI of I-type is positive de�nite.

Proposition 1. If Condition I holds then the group GB is isomorphic to some subgroup of the group of
orthogonal transformations, and this isomorphism is given by the mapping

P → SPS−1, (7)

where the matrix S is such that BI = STS.

In what follows, we denote Q := SPS−1.
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Structure of the Symmetry Group

Symmetry implies that

P TAP = A

P TBiP =
M∑
j=1

LijBj

(8)

where Lij are the elements of a permuta-
tion matrix, i.e. matrix L = (Lij) has a
single �1� in each column and in each row,
other elements of L are zeros.

In terms of Q it means that

QTÃQ = Ã , QT B̃iQ =
N∑
i=1

LijB̃j

(9)
where

Ã =
(
S−1

)T
AS−1 (10)

B̃i =
(
S−1

)T
BiS

−1 (11)

Or linearly in Q:

ÃQ = QÃ , B̃iQ =
N∑
i=1

LijQB̃j

(12)
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Continuous and Discrete Subgroups

In non-degenerate case as any Lie group, G consists of connected components (in the topological sense), only one
of which, hereafter denoted as G1, contains the identity element.

This G1 is invariant subgroup of G and further called the continuous subgroup of symmetries.

The remaining connected components (not being subgroups) are the cosets of G1. These cosets make up a
discrete subgroup of symmetries. Given that G1 is an invariant subgroup, multiplication of the cosets is
determined naturally, and this discrete group is factor group G/G1.

The Case of Non-Degenerate Spectra:

Theorem 1. If Condition I holds and the eigenvalues of at least one matrix B̃i are all di�erent, then the
group GB is �nite and may be found in O(M !2NO(log(NM))) time if all eigenvalues of B̃i are given.
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Finding Continuous Subgroup of Symmetry

Consider the following system of linear
equations in an:


Bi

(∑
n

anGn

)
=

(∑
n

anGn

)
Bi ,

A

(∑
n

anGn

)
=

(∑
n

anGn

)
A .

(13)
Let Ĝn make up a basis of the space
of solutions to the system of linear equa-
tions (13) in the linear space of the
(N × N) skew-symmetric matrices.

Theorem 2

If Condition I holds, the continuous sub-
group of symmetries G1 consists of or-
thogonal transformations with matrices
expressed by the matrix exponential func-
tion e

∑
n anĜn, where an are any real-

valued parameters.
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Symmetries Detection via Extrema Enumeration under Condition I

� Constraint optimization

min
Q

(
||ÃQ − QÃ|| +

M∑
i=1

||B̃iQ − QC̃i(L)|| : QQT = E

)
(14)

where

� Q is a matrix of variables,

� the matrices Ci(L) are de�ned by L as C̃i(L) :=
∑M

j=1 LijB̃j, and

� || · || denotes any matrix norm.
A set of globally optimal solutions (with zero objective value) gives the set of orthogonal symmetry transforma-
tions corresponding to a given permutation matrix L. The union of M ! such sets, taken over all permutation
matrices L, makes up the whole group G.

� Unconstraint optimization One can similarly formulate an optimization problem with respect to the
elements of matrix P :

min
P

(
||P TAP − A|| +

M∑
i=1

||P TBiP − Ci(L)||
)
, (15)

where Ci(L) :=
∑M

j=1 LijBj.

In the case of trivial continuous subgroup of symmetry and �nite discrete symmetry group, these problems have a
�nite set of optimal solutions, which may be found e.g. by a multi-start of a gradient descent method.
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General Case

In general, problems (14) or (15) describe not only the discrete symmetries, but also the continuous ones.
Identi�cation of a continuum of solutions by numerical methods is problematic, therefore, before solving these
problems, it would be helpful to factor out the continuous symmetries.

Conjecture 1. Let L be a subalgebra of the matrix Lie algebra so(N) with basis elements G
(L)
i , corre-

sponding to a closed subgroup G in SO(N), and let R be the linear complement of L in so(N) with basis

elements G
(R)
j . Then any element g ∈ SO(N) can be represented as:

g = e
∑

i a
(L)
i G

(L)
i e

∑
j a

(R)
j G

(R)
j , (16)

where {a(L)
i } and {a(R)

j } are sets of real coe�cients.

Conjecture 2. Let L be a subalgebra of the matrix Lie algebra so(N) with basis elements G
(L)
i , corresponding

to a closed subgroup G in SO(N), and let R be the linear complement of L in so(N) with basis elements

G
(R)
j . Then any element g ∈ SO(N) can be represented as:

g =
∏
i

ea
(L)
i G

(L)
i

∏
j

ea
(R)
j G

(R)
j , (17)
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Possible Applications in Quadratic Programming

� If some valid cuts are known already for the problem instance, then each linear symmetry of a problem may be
used to double the set of valid cuts.

� If some symmetry P ∈ G is available, which maps a half-space {x : aTx ≥ 0} into the half-space
{x : aTx ≤ 0} for some a ∈ RN , then the constraint aTx ≥ 0 may be added to the set of problem
constraints as a valid cut.

� It is not necessary to �nd all symmetries of a problem to improve performance of solution algorithms, such as
the branch and cut method!

� If G has a non-trivial continuous subgroup, such that any element of D may be mapped onto some hyper-plane
in RN by a corresponding P ∈ G, then the problem dimension may be decreased by one.

� Question: in general, how much the problem dimension may be decreased, if G has a non-trivial continuous
subgroup?
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Back to Phased Antenna Array Optimization Problem
xTGx → max,

0 ≤ xTH1x ≤ 1,

...

0 ≤ xTHnx ≤ 1,

(18)

where G and Hi, 0 ≤ i ≤ n are 2n × 2n matrices. The sum of matrices Hi is positive de�nite.

The solutions of phased antenna array optimization problem are equivalent up to a shift of phases in all emitters
by an equal angle, which corresponds to a rotation transformation of vector x in terms of problem (18). This
symmetry may be taken into account by �xing one of the variables to zero, for example, x2n = 0.

The continuous subgroup of symmetries obtained by Theorem 2 consisted of phase shifting symmetries only.

In most of the instances, �xing the variable x1 led to an acceleration of the algorithm, the average acceleration of
BARON was 0.95, which indicates the expediency of �xing one of the variables to zero when using this type of solver.
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Conclusions

� It is expected that the proposed approach may be generalized to other types of problems in the mathematical
programming.

� Conjectures 1 and 2 remain as open questions.

� Technical development of the outlined methods for detection of problem symmetries is also a subject of further
research.

� Exploration of other de�nitions of symmetries of optimization problems, leading to wider groups of symmetries.
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The end
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