Maximal ideal spaces of invariant function algebras on homogeneous spaces of compact Lie groups

V.M. Gichev

Omsk Branch of Sobolev Institute of Mathematics

Conference CCMAL, September 26-30, 2023

向下 イヨト イヨト

The problem

- Let G be a compact connected Lie group,
- M = G/K be its homogeneous space,
- A be a G-invariant uniform algebra on M, i.e., a closed subalgebra of the Banach algebra C(M) which contains constant functions.
 For brevity, we say that A is an invariant algebra.

The problem

- Let G be a compact connected Lie group,
- M = G/K be its homogeneous space,
- A be a G-invariant uniform algebra on M, i.e., a closed subalgebra of the Banach algebra C(M) which contains constant functions.
 For brevity, we say that A is an invariant algebra.
- The set $\mathcal{M}_A = \operatorname{Hom}(A, \mathbb{C})$ is the maximal ideal space (spectrum) of A. It is a compact subset of the unit sphere in the dual to A space A^* with the *-weak topology.

イロト イヨト イヨト

The problem

- Let G be a compact connected Lie group,
- M = G/K be its homogeneous space,
- A be a G-invariant uniform algebra on M, i.e., a closed subalgebra of the Banach algebra C(M) which contains constant functions.
 For brevity, we say that A is an invariant algebra.
- The set $\mathcal{M}_A = \operatorname{Hom}(A, \mathbb{C})$ is the maximal ideal space (spectrum) of A. It is a compact subset of the unit sphere in the dual to A space A^* with the *-weak topology.

Problem

Describe maximal ideal spaces of invariant algebras.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Let \mathcal{P} be the algebra of all holomorphic polynomials on \mathbb{C}^n .

The polynomial hull of a compact $Q \subset \mathbb{C}^n$ is defined as follows:

$$\widehat{\mathcal{Q}} = \{z \in \mathbb{C}^n: \, |p(z)| \leq \|p\|_Q \, \, ext{ for all } \, p \in \mathcal{P} \},$$

where $||p||_Q = \sup\{|p(q)| : q \in Q\}.$

The closure P(Q) of $\mathcal{P}|_Q$ in C(Q) is a uniform algebra on Q.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let \mathcal{P} be the algebra of all holomorphic polynomials on \mathbb{C}^n .

The polynomial hull of a compact $Q \subset \mathbb{C}^n$ is defined as follows:

$$\widehat{\mathcal{Q}} = \{z \in \mathbb{C}^n : |p(z)| \leq \|p\|_Q \text{ for all } p \in \mathcal{P}\},$$

where $||p||_Q = \sup\{|p(q)| : q \in Q\}.$

The closure P(Q) of $\mathcal{P}|_Q$ in C(Q) is a uniform algebra on Q.

The mapping $\varphi \to (\varphi(z_1), \dots, \varphi(z_n))$ from $P(Q)^*$ to \mathbb{C}^n defines a bijection between $\mathcal{M}_{P(Q)}$ and \widehat{Q} .

Let $G \subseteq U(n)$ and $O_v = Gv$ be the orbit of a vector $v \in \mathbb{C}^n$. Then $P(O_v)$ is an invariant algebra on O_v and we get a finite dimensional version of the problem:

Describe polynomial hulls of orbits of compact linear groups.

・ 同 ト ・ ヨ ト ・ ヨ ト

The natural representation T of G in C(M) extends to the convolution algebra M(G) of finite regular Borel measures on G:

$$T_{\mu}f(x)=\int f(g^{-1}x)\,d\mu(g),$$

where $\mu \in M(G)$, $f \in C(M)$, and $x \in M$. The operators T_{μ} preserve every closed invariant subspace of C(M).

Let σ be the invariant probability measure of G. Then $T_{\sigma}f$ is constant for any $f \in C(M)$.

The natural representation T of G in C(M) extends to the convolution algebra M(G) of finite regular Borel measures on G:

$$T_{\mu}f(x)=\int f(g^{-1}x)\,d\mu(g),$$

where $\mu \in M(G)$, $f \in C(M)$, and $x \in M$. The operators T_{μ} preserve every closed invariant subspace of C(M).

Let σ be the invariant probability measure of G. Then $T_{\sigma}f$ is constant for any $f \in C(M)$.

Lemma

Let I be a closed invariant ideal of A such that $I \neq A$. Then $T_{\sigma}I = \{0\}$.

Let \Im be the set of all closed invariant ideals I in A such that $I \neq A$ ordered by inclusion.

Proposition

The family \Im contains the greatest ideal \mathcal{J} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Let \Im be the set of all closed invariant ideals I in A such that $I \neq A$ ordered by inclusion.

Proposition

The family \Im contains the greatest ideal \mathcal{J} .

Proof.

By the lemma above, for any $I \in \mathfrak{I}$ and $f \in I$

$$T_{\sigma}f = \int_{G \times M} f(g^{-1}x) \, d\sigma(g) dx = \int_M f(x) \, dx = 0.$$

Hence the closure \mathcal{J} of the algebraic sum of all $I \in \mathfrak{I}$ belongs to \mathfrak{I} .

イロト イボト イヨト イヨト

We define two types of invariant algebras according to the extreme cases for their greatest ideals:

- \mathfrak{A} : codim $\mathfrak{J} = 1$,
- $\mathfrak{B} : \mathfrak{J} = \{\mathbf{0}\}.$

They can be stated in terms of the natural actions of *G* in *A* and \mathcal{M}_A :

- $A \in \mathfrak{A} \quad \iff \quad G \text{ has the unique fixed point in } \mathcal{M}_A,$
- $A \in \mathfrak{B} \quad \iff \quad A \text{ has no proper } G \text{-invariant ideals.}$

Set $B = A/\mathcal{J}$ and $C = \mathcal{J} + \mathbb{C}$. Let ϵ denote element of \mathcal{M}_C which corresponds to the maximal ideal \mathcal{J} . Note that ϵ is the fixed point of G in \mathcal{M}_C . Put

$$\begin{aligned} &\mathcal{M}'_{B} = \{ \varphi \in \mathcal{M}_{A} : \, \varphi = 0 \text{ on } \mathcal{J} \}, \\ &\mathcal{M}'_{C} = \{ \varphi \in \mathcal{M}_{A} : \, \varphi \neq 0 \text{ on } \mathcal{J} \}. \end{aligned}$$

Then $\mathcal{M}_A = \mathcal{M}'_B \cup \mathcal{M}'_C$ and $\mathcal{M}'_B \cap \mathcal{M}'_C = \varnothing$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Set $B = A/\mathcal{J}$ and $C = \mathcal{J} + \mathbb{C}$. Let ϵ denote element of \mathcal{M}_C which corresponds to the maximal ideal \mathcal{J} . Note that ϵ is the fixed point of G in \mathcal{M}_C . Put

$$\begin{split} &\mathcal{M}'_{B} = \{ \varphi \in \mathcal{M}_{A} : \, \varphi = 0 \, \, \text{on} \, \, \mathcal{J} \}, \\ &\mathcal{M}'_{C} = \{ \varphi \in \mathcal{M}_{A} : \, \varphi \neq 0 \, \, \text{on} \, \, \mathcal{J} \}. \end{split}$$

Then $\mathcal{M}_A = \mathcal{M}'_B \cup \mathcal{M}'_C$ and $\mathcal{M}'_B \cap \mathcal{M}'_C = \varnothing$.

Let $\pi : A \to B$ be the natural projection and $\rho : A^* \to C^*$ be the operator of restriction to \mathcal{J} .

The mapping $\varphi \to \varphi \circ \pi$ is a homeomorphism between \mathcal{M}_B and \mathcal{M}'_B . The restriction operator ρ is a continuous bijection between \mathcal{M}'_C and $\mathcal{M}_C \setminus \{\epsilon\}$.

イロト イヨト イヨト

Here is a construction for extension of $\varphi \in \mathcal{M}_C \setminus \{\epsilon\}$ to A. It follows the proof of [1, Theorem 6.1]. Let $u \in \mathcal{J}$ be such that $\varphi(u) = 1$ and put

 $\psi(f) = \varphi(fu)$

for $f \in A$. Then independently of the choice of u we have $\psi(1) = 1$,

 $\psi(f) = \varphi(f) \text{ for all } f \in \mathcal{J},$

and

$$\psi(f_1f_2) = \varphi(f_1f_2u) = \varphi(f_1f_2u^2) = \varphi((f_1u)(f_2u))$$
$$= \varphi(f_1u)\varphi(f_2u) = \psi(f_1)\psi(f_2)$$

for all $f_1, f_2 \in A$.

Thus, a possible way to solve the problem is to study algebras of the classes \mathfrak{A} , \mathfrak{B} and method of gluing \mathcal{M}_B with $\mathcal{M}_C \setminus \{\epsilon\}$.

向下 イヨト イヨト

Set

$$(a,b) = T_{\sigma}(ab) = \int_M a(x)b(x) dx.$$

This is a bilinear G-invariant form on the closure H of A in $L^2(M)$ and, moreover, (a, \overline{b}) is the scalar product in H.

Set

$$(a,b) = T_{\sigma}(ab) = \int_{M} a(x)b(x) dx.$$

This is a bilinear G-invariant form on the closure H of A in $L^2(M)$ and, moreover, (a, \overline{b}) is the scalar product in H.

 \mathcal{J} consists of $a \in A$ such that (a, f) = 0 for all $f \in A$. This is true because (ab, f) = (a, bf) = 0 for all $a \in \mathcal{J}$ and $b, f \in A$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Set

$$(a,b) = T_{\sigma}(ab) = \int_{M} a(x)b(x) dx.$$

This is a bilinear G-invariant form on the closure H of A in $L^2(M)$ and, moreover, (a, \overline{b}) is the scalar product in H.

 \mathcal{J} consists of $a \in A$ such that (a, f) = 0 for all $f \in A$. This is true because (ab, f) = (a, bf) = 0 for all $a \in \mathcal{J}$ and $b, f \in A$.

 $A \in \mathfrak{A}$ if and only if $a, b \in A$ and (a, 1) = 0 imply (a, b) = 0. The form has rank 1 and $\mathfrak{J} = 1^{\perp}$.

- 4 同 ト 4 目 ト 4 目 ト

Set

$$(a,b) = T_{\sigma}(ab) = \int_{M} a(x)b(x) dx.$$

This is a bilinear G-invariant form on the closure H of A in $L^2(M)$ and, moreover, (a, \overline{b}) is the scalar product in H.

 \mathcal{J} consists of $a \in A$ such that (a, f) = 0 for all $f \in A$. This is true because (ab, f) = (a, bf) = 0 for all $a \in \mathcal{J}$ and $b, f \in A$.

 $A \in \mathfrak{A}$ if and only if $a, b \in A$ and (a, 1) = 0 imply (a, b) = 0. The form has rank 1 and $\mathfrak{J} = 1^{\perp}$.

 $A \in \mathfrak{B}$ if and only if the form (,) is non-degenerate on A. Due to the characterization of \mathcal{J} , the form (,) degenerates on \mathcal{J} .

イロト イポト イヨト イヨト

Recall that a uniform algebra on a Hausdorff compact Q is a closed subalgebra of the Banach algebra C(Q) of all continuous functions on Q which contains constant functions.

A representing measure of $\varphi \in \mathcal{M}_A$ is an extension of φ onto C(M) which preserves its norm. Since $\varphi(1) = 1$ and $\|\varphi\| = 1$, it is a probability measure. The set \mathcal{M}_{φ} of representing measures for φ is a *-weakly compact convex set.

For a set $E \subseteq Q$, the *A*-hull \widehat{E} of *E* is equal to the set of $\varphi \in \mathcal{M}_A$ such that $|\varphi(f)| \leq ||f||_E$ for all $f \in A$.

Let $\epsilon \in \mathcal{M}_A$ be the fixed point of G. Then \mathcal{M}_{ϵ} is G-invariant. Hence it contains the fixed point σ .

Let $E \subseteq M$ be closed, $\varphi \in \mathcal{M}_A$. Then $\varphi \in \widehat{E}$ if and only if there is a representing measure with support in E.

向下 イヨト イヨト

- A uniform algebra $A \subseteq C(Q)$ is called *antisymmetric* if any real valued function in A is constant.
- A set E ⊆ Q is called a set of antisymmetry if every real on E function f ∈ A is constant on E.
- If two sets of antisymmetry have a common point, then their union is also a set of antisymmetry.
- Every set of antisymmetry is contained in a maximal one.

イロト イヨト イヨト

Let \mathbb{T} be the unit circle |z| = 1 in \mathbb{C} and \mathbb{D} be the unit disc bounded by \mathbb{T} . Let $A(\mathbb{D})$ be the algebra of functions holomorphic on \mathbb{D} and continuous up to the boundary. For every $f \in A(\mathbb{D})$ the Taylor series converges in \mathbb{D} :

$$f(z) = c_0 + c_1 z + c_2 z^2 + \cdots$$

The complex conjugate function \overline{f} also admits the Taylor decomposition:

$$\overline{f(z)} = \overline{c}_0 + \overline{c}_1 \overline{z} + \overline{c}_2 \overline{z}^2 + \cdots.$$

It is not holomorphic, i.e. $\overline{f} \notin A(\mathbb{D})$. Thus $A(\mathbb{D})$ is antisymmetric.

• 同 • • 三 • • 三 •

Theorem (Bishop–Shilov decomposition)

Let A be a uniform algebra on compact Q and \mathfrak{Q} be the family of all maximal sets of antisymmetry for A. Then

(i) the sets in \mathfrak{Q} cover Q, they are closed and pairwise disjoint,

(ii) $f \in C(Q)$ belongs to A if and only if $f|_E \in A|_E$ for any $E \in \mathfrak{Q}$.

If every set of antisymmetry is a single point, then this theorem becomes the Stone–Weierstrass theorem.

< 回 > < 回 > < 回 > .

The Bishop-Shilov decomposition for invariant algebras

Let A be an invariant algebra. Denote by Q_x the set from \mathfrak{Q} which contains $x \in M$ and put o = [K], $A_o = A|_{Q_o}$, and $K' = \{g \in G : go \in Q_o\}$. Then

 $\mathcal{K}'=\{g\in G: gQ_o=Q_o\}.$

The Bishop–Shilov decomposition for invariant algebras

Let A be an invariant algebra. Denote by Q_x the set from \mathfrak{Q} which contains $x \in M$ and put o = [K], $A_o = A|_{Q_o}$, and $K' = \{g \in G : go \in Q_o\}$. Then

 $K'=\{g\in G: gQ_o=Q_o\}.$

According to the Bishop-Shilov decomposition, we have

- K' is a closed subgroup of G such that K' ⊇ K and Ω consists of its orbits.
- A contains all K'-invariant continuous functions.
- A_o is an *antisymmetric* invariant algebra on Q_o.
- $A = \{f \in C(M) : T_g f |_{Q_o} \in A_o\}.$

イロト イポト イヨト イヨト 一日

The Bishop–Shilov decomposition for invariant algebras

Let A be an invariant algebra. Denote by Q_x the set from \mathfrak{Q} which contains $x \in M$ and put o = [K], $A_o = A|_{Q_o}$, and $K' = \{g \in G : go \in Q_o\}$. Then

 $K'=\{g\in G: gQ_o=Q_o\}.$

According to the Bishop-Shilov decomposition, we have

- K' is a closed subgroup of G such that K' ⊇ K and Ω consists of its orbits.
- A contains all K'-invariant continuous functions.
- A_o is an *antisymmetric* invariant algebra on Q_o.
- $A = \{f \in C(M) : T_g f |_{Q_o} \in A_o\}.$

The space M = G/K can be treated as the total space of the equivariant fibration with the base M' = G/K' and fiber F = K'/K. We can get \mathfrak{M}_A filling F with the space \mathfrak{M}_{A_o} .

The class \mathfrak{A}

Let μ denote the invariant probability measure on M.

If $A \in \mathfrak{A}$, then (i) $\mu \in \mathfrak{M}_{\epsilon}$,

(ii) A is antisymmertric.

To prove (i), note that the convex *-weakly compact set \mathcal{M}_ϵ is G-invariant and μ is its fixed point.

▲御▶ ▲ 国▶ ▲ 国▶

The class \mathfrak{A}

Let μ denote the invariant probability measure on M.

If $A \in \mathfrak{A}$, then

(i) $\mu \in \mathcal{M}_{\epsilon}$,

(ii) A is antisymmetric.

To prove (i), note that the convex *-weakly compact set \mathcal{M}_ϵ is G-invariant and μ is its fixed point.

Let $f \in A$ be a real nonconstant function. Replacing f with f - c, for a suitable c we have

$$\int f d\mu = 0$$
 and $\int f^2 d\mu > 0$.

On the other hand,

$$\epsilon(f^2) = \epsilon(f)^2 = \left(\int f \, d\mu\right)^2 = 0.$$

This proves (ii).

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall that A_o is "the antisymmetric part" of an invariant algebra A in the Bishop–Shilov decomposition. Let \varkappa be the Haar measure of K'. Then $T_{\varkappa}^2 = T_{\varkappa}$.

Theorem

If $A_o \in \mathfrak{A}$, then

- T_× is a projection onto the algebra of all K'-invariant functions in C(M), which is isometrically isomorphic to C(M').
- T_{\varkappa} is an endomorphism of A and ker $T_{\varkappa} = \mathcal{J}$.

The first assertion holds due to the Bishop-Shilov decomposition theorem. It is easy to prove the second.

Every compact group *G* acting in a complex linear space *V* admits the complexification $G^{\mathbb{C}}$. Let $v \in V$. We denote $M = O_v = Gv$, $M^{\mathbb{C}} = O_v^{\mathbb{C}} = G^{\mathbb{C}}v$ and call them *real* and *complex orbits*, respectively.

(日) (日) (日)

Let 0 be the unique fixed point of G in V, $M = O_v$ for some $v \in V$, and 0 belongs to the closure of $M^{\mathbb{C}}$. Then $\{0\}$ is the unique closed orbit in it. The set of all such v is the *nilpotent cone* (or *null-cone*) \mathcal{N} . It can be defined as follows:

p(v) = 0 for any G-invariant polynomial p such that p(0) = 0.

Set $\mathcal{P}_0 = \{ p \in \mathcal{P} : p(0) = 0 \}$. Since any invariant polynomial can be obtained by averaging over G,

$$v \in \mathcal{N} \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} \int_{\mathcal{G}} p(gv) \, dg = 0 \hspace{0.2cm} ext{for all} \hspace{0.2cm} p \in \mathcal{P}_{0}.$$

It follows that $P(M) \in \mathfrak{A}$ if and only if $v \in \mathcal{N}$. Then $\widehat{M} \subset \mathcal{N}$.

The class ${\mathfrak B}$ for orbits of linear groups

Let's denote A = P(M) for brevity.

The following conditions are equivalent:

```
(i) A \in \mathfrak{B},
(ii) M^{\mathbb{C}} is closed in V.
(iii) \widehat{M} \subset M^{\mathbb{C}}.
```

(i) \Rightarrow (ii): If $M^{\mathbb{C}}$ is not closed, then the ideal generating by polynomials which vanish on the closed orbit in the closure of $M^{\mathbb{C}}$ is invariant and proper in A. (ii) \Rightarrow (iii): If $p \in \mathcal{P}$ vanishes on M, then p = 0 on \widehat{M} by definition of

the polynomial hull. Hence points of \widehat{M} satisfy the finite number of equations which distinguish $M^{\mathbb{C}}$.

(iii) \Rightarrow (i): Let I be a maximal ideal which contains \mathcal{J} . Since $\widehat{M} \subset M^{\mathbb{C}}$, there is $u \in M^{\mathbb{C}}$ such that $I = \{f \in A : f(u) = 0\}$. If $f \in \mathcal{J}$, then f = 0 on O_u . Hence f = 0 on its complexification $M^{\mathbb{C}}$. It follows that $\mathcal{J} = 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Here are three equivalent definitions of a commutative homogeneous space (G is compact and connected).

- (1) *M* is *multiplicity free:* the quasiregular representation of *G* in $L^2(M)$ contains every irreducible unitary representation of *G* with multiplicity 0 or 1.
- (2) (G, K) is a *Gelfand pair*: the convolution algebra of all left and right *K*-invariant functions in $L^1(G)$ (or measures) is commutative.
- (3) $M^{\mathbb{C}}$ is *spherical*: a Borel subgroup of $G^{\mathbb{C}}$ has an open orbit in $M^{\mathbb{C}}$.

Theorem (G.,[3], 2008)

Let A be an invariant algebra on a commutative homogeneous space M. Then

- if A is antisymmetric, then $A \in \mathfrak{A}$,
- if $A \in \mathfrak{B}$, then $\overline{A} = A$.

The assumption of commutativity is essential. There are antisymmetric $A \in \mathfrak{B}$.

Corollary

Let M be commutative. Then the projection $A \rightarrow B = A/3$ extends to an endomorphisms of A with kernel J. The algebra B is isometrically isomorphic to C(M') for some homogeneous space M'.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A real form of a complex manifold is the set of fixed point of its antiholomorphic involution. In what follows the real forms are compact.

Corollary

Let M^{c} be closed. If a real orbit M in M^{c} is a commutative homogeneous space, then M is a real form of M^{c} .

< 同 > < 回 > < 回 > <

Real forms of closed complex orbits can be characterized by their polynomial convexity.

Theorem (G., Latypov, [4], 2001)

Let $G \subset \operatorname{GL}(n, \mathbb{C})$ be a compact connected group, $v \in \mathbb{C}^n$. Then

- (i) $M^{\mathbb{C}}$ is closed if and only if it contains a polynomially convex real orbit,
- (ii) if $M^{\mathbb{C}}$ is closed, then $\widehat{M} = M$ if and only if M is a real form of $M^{\mathbb{C}}$,
- (iii) if $M^{\mathbb{C}}$ is closed and M is a real form of $M^{\mathbb{C}}$, then P(M) = C(M). The converse is also true.

Set $G = \mathrm{SU}(2)$. It is a real form of the group $G^{\mathbb{C}} = \mathrm{SL}(2,\mathbb{C})$ defined by the antiholomophic involution $X \to (\overline{X}^{\mathsf{T}})^{-1}$. Let's consider the adjoint action of G in the Lie algebra $\mathfrak{g}^{\mathbb{C}} = \mathrm{sl}(2,\mathbb{C})$: $\mathrm{Ad}(g)\zeta = g^{-1}\zeta g$. Here is the standard basis of $\mathfrak{g}^{\mathbb{C}}$:

$$\mathsf{h} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \ \ \mathsf{e} = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \ \ \mathsf{f} = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right).$$

The group G consists of matrices $\begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$, where $|a|^2 + |b|^2 = 1$.

Actually, in su(2) \cong so(3) acts the group SO(3) whose complexification is SO(3, \mathbb{C}) \cong SL(2, \mathbb{C})/{±1}.

イロト イヨト イヨト

Let $\langle \zeta, \omega \rangle$ be the bilinear form $\operatorname{Tr} \zeta \omega$ on su(2). Set

$$v = h + re = \begin{pmatrix} 1 & r \\ 0 & -1 \end{pmatrix},$$

where r > 0. Then $M^{\mathbb{C}}$ is the quadric $\langle \zeta, \zeta \rangle = 2$ and

$$M = O_{v} = M^{\mathbb{C}} \cap \{\langle \zeta^{*}, \zeta \rangle = 2 + r^{2}\} \cong \mathbb{RP}^{3} \cong \mathrm{SO}(3),$$

where $\zeta^* = -\overline{\zeta}^{\mathsf{T}}$. Setting r = 0 we get the real form $M^{\mathbb{R}} \cong \mathbb{S}^2$ of $M^{\mathbb{C}}$.

(日本) (日本) (日本)

Note that $M^{\mathbb{C}}$ contains the line $L = h + \mathbb{C}e$. Clearly,

$$\begin{split} \mathbf{h} &+ \mathbb{T}\rho \mathbf{e} \subseteq \boldsymbol{M}, \\ \mathbf{h} &+ \mathbb{D}\rho \mathbf{e} \subseteq \widehat{\boldsymbol{M}}, \end{split}$$

where $\mathbb T$ is the unit circle that bounds the unit disc $\mathbb D$, and $\rho=\sqrt{2+r^2}.$ It follows that

- we get \widehat{M} applying Ad(g) to the disc $\widehat{M} \cap L$, where g runs over SU(2),
- this also proves that P(M) is antisymmetric,
- it belongs to \mathfrak{B} because $M^{\mathbb{C}}$ is closed.

・ 同 ト ・ ヨ ト ・ ヨ ト

The algebra A = P(M) can be defined as the algebra of all continuous functions on M which admit holomorphic extension to the disc in the line $gL = g(h + \mathbb{C}e)$ bounded by the circle $M \cap gL$ for all $g \in SU(2)$.

The algebra A = P(M) can be defined as the algebra of all continuous functions on M which admit holomorphic extension to the disc in the line $gL = g(h + \mathbb{C}e)$ bounded by the circle $M \cap gL$ for all $g \in SU(2)$.

There is another definition of A. Since $\dim_{\mathbb{R}} M = 3$ and $\dim_{\mathbb{C}} M^{\mathbb{C}} = 2$, the tangent space T_pM contains a complex line for all $p \in M$. This is a *CR*-structure on M. It defines the algebra of smooth *CR*-functions whose differentials are complex linear on on these lines. The uniform closure of this algebra is equal to the algebra A.

イロト イヨト イヨト

The algebra A = P(M) can be defined as the algebra of all continuous functions on M which admit holomorphic extension to the disc in the line $gL = g(h + \mathbb{C}e)$ bounded by the circle $M \cap gL$ for all $g \in SU(2)$.

There is another definition of A. Since $\dim_{\mathbb{R}} M = 3$ and $\dim_{\mathbb{C}} M^{\mathbb{C}} = 2$, the tangent space T_pM contains a complex line for all $p \in M$. This is a *CR*-structure on M. It defines the algebra of smooth *CR*-functions whose differentials are complex linear on on these lines. The uniform closure of this algebra is equal to the algebra A.

Problem

Describe maximal ideal spaces of antisymmetric algebras without proper invariant ideals.

イロト イヨト イヨト

A *CR*-manifold is called *embeddable* if it admits an embedding into \mathbb{C}^n which induces its *CR*-structure. The *CR*-structure of the example above on $M \cong SO(3) \cong S^3/\mathbb{Z}_2$ can be lifted to S^3 . It is known as an example of a locally embeddable *CR*-manifold which is not embeddable globally.

Let $K, K_{\mathbb{C}}$ be the stable subgroups of v in G and $G^{\mathbb{C}}$, respectively. Clearly, $K^{\mathbb{C}} \subseteq K_{\mathbb{C}}$. If $K_{\mathbb{C}} = K^{\mathbb{C}}$, then M is a real form of $M^{\mathbb{C}}$. Every $h \in K_{\mathbb{C}} \setminus K^{\mathbb{C}}$ can be associated with an analytic annulus or strip attached to M.

(日) (日) (日)

Let $K, K_{\mathbb{C}}$ be the stable subgroups of v in G and $G^{\mathbb{C}}$, respectively. Clearly, $K^{\mathbb{C}} \subseteq K_{\mathbb{C}}$. If $K_{\mathbb{C}} = K^{\mathbb{C}}$, then M is a real form of $M^{\mathbb{C}}$. Every $h \in K_{\mathbb{C}} \setminus K^{\mathbb{C}}$ can be associated with an analytic annulus or strip attached to M.

There is the polar decomposition

h = gs,

where $g \in G$, $s = \exp(i\xi)$, and $\xi \in \mathfrak{g}$. Since hv = v, we have

 $sv = g^{-1}v \in M.$

Setting

 $\lambda(z) = \exp(z\xi)v, \quad 0 < \mathrm{Im}z < 1,$

we get an analytic strip attached to M.

Let X, Y be compact. We consider $C(X \times Y)$ as a completion of $C(X) \otimes C(Y)$ and denote it as $C(X) \widehat{\otimes} C(Y)$. It is a bialgebra with the comultiplication $\Delta f(g, h) = f(gh)$.

Theorem

A closed linear subspace $A \subseteq C(G)$ is an bi-invariant algebra if and only if it satisfies the following conditions:

 $1 \in A,$ $A \cdot A \subseteq A,$ $\Delta A \subseteq A \widehat{\otimes} A.$

- 4 同 ト 4 目 ト 4 目 ト

For any $f \in A$ the function f(gh) can be approximated uniformly by sums $\sum u_j(g)v_j(h)$, where $u_j, v_j \in A$. For every couple $\mu, \nu \in M(G)$

 $\mu\otimes\nu(u\otimes v)=\mu(u_j)\nu(v_j).$

If $\mu \in A^{\perp}$ or $\nu \in A^{\perp}$, then $\mu(u)\nu(v) = 0$. Hence A^{\perp} is an ideal of M(G) and A^{\perp} is $G \times G$ -invariant.

(日本) (日本) (日本)

For any compact group G, the space $G \times G/G \cong G$ is commutative. If A is an $G \times G$ -invariant algebra on G, then

- there is a natural semigroup structure in $\mathcal{M}_{\mathcal{A}}$,
- the inversion in G extends to an involutive antiholomorphic antiautomorphism * : $\mathfrak{M}_A \to \mathfrak{M}_A$,
- each φ ∈ M_A admits the polar decomposition φ = gs, there g ∈ G and s is symmetric (i.e., s* = s),

Bi-invariant algebras on groups

There is a natural preorder in the set \mathcal{I} of idempotents:

 $j \leq k \iff jk = kj = j.$

• The set \mathcal{I} is a complete lattice.

In particular, there is the least idempotent ϵ in \mathcal{I} .

- For any symmetric s, there exists the unique one parameter symmetric semigroup γ : ℝ⁺ → M_A such that γ(1) = s,
- it extends to a homomorphism $\mathbb{C}^+ \to \mathcal{M}_A$ such that $f \circ \gamma$ is holomorphic on \mathbb{C}^+ ,
- it has a limit $\lim_{\mathrm{Re}\, z\to\infty} \gamma(z)$ in \mathcal{I} .

イロト イボト イヨト イヨト

Every $j \in \mathcal{I}$ relates to a subgroup G^j of \mathcal{M}_A with the unit j. Moreover, there is a convex closed pointed $\operatorname{Ad}(G)$ -invariant cone C^j in the Lie algebra \mathfrak{g}^j such that the set $G^j \exp(iC^j)$ is a subsemigroup of the complexification of G^j . It is a complex Lie semigroup. The family of these semigroups covers \mathcal{M}_A .

・ 同 ト ・ ヨ ト ・ ヨ ト

- Gamelin T.., "Uniform Algebras". Prentice-Hall, Englewood Cliffs, N. J., 1969.
- Gichev V. M., "Maximal Ideal Spaces of Invariant Function Algebras on Compact Groups", Sib. Adv. in Math. 33:2 (2023), 107–139.
- Gichev V. M., "Invariant Function Algebras on Compact Commutative Homogeneous Spaces", Mosc. Math. J. 8:4 (2008), 697–709.
- Gichev V. M., Latypov I. A., "Polynomially convex orbits of compact Lie groups", Transform. Groups, 6:4 (2001), 321–331.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you for your attention!

V.M. Gichev Spectra of invariant function algebras

-