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The problem

Let G be a compact connected Lie group,

M = G/K be its homogeneous space,

A be a G -invariant uniform algebra on M, i.e., a closed subalgebra
of the Banach algebra C (M) which contains constant functions.
For brevity, we say that A is an invariant algebra.

The set MA = Hom(A,C) is the maximal ideal space (spectrum) of
A. It is a compact subset of the unit sphere in the dual to A space
A∗ with the ∗-weak topology.

Problem
Describe maximal ideal spaces of invariant algebras.
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Polynomial hulls

Let P be the algebra of all holomorphic polynomials on Cn.

The polynomial hull of a compact Q ⊂ Cn is defined as follows:

Q̂ = {z ∈ Cn : |p(z)| ≤ ‖p‖Q for all p ∈ P},

where ‖p‖Q = sup{|p(q)| : q ∈ Q}.

The closure P(Q) of P|Q in C (Q) is a uniform algebra on Q.

The mapping ϕ→ (ϕ(z1), . . . , ϕ(zn)) from P(Q)∗ to Cn defines a
bijection between MP(Q) and Q̂.
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The finite dimensional case

Let G ⊆ U(n) and Ov = Gv be the orbit of a vector v ∈ Cn.
Then P(Ov ) is an invariant algebra on Ov and we get a finite
dimensional version of the problem:

Describe polynomial hulls of orbits of compact linear groups.
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Invariant ideals

The natural representation T of G in C (M) extends to the convolution
algebra M(G ) of finite regular Borel measures on G :

Tµf (x) =

∫
f (g−1x) dµ(g),

where µ ∈ M(G ), f ∈ C (M), and x ∈ M. The operators Tµ preserve
every closed invariant subspace of C (M).

Let σ be the invariant probability measure of G . Then Tσf is constant
for any f ∈ C (M).

Lemma

Let I be a closed invariant ideal of A such that I 6= A. Then TσI = {0}.
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The greatest invariant ideal

Let I be the set of all closed invariant ideals I in A such that I 6= A
ordered by inclusion.

Proposition

The family I contains the greatest ideal J.

Proof.
By the lemma above, for any I ∈ I and f ∈ I

Tσf =

∫
G×M

f (g−1x) dσ(g)dx =

∫
M

f (x) dx = 0.

Hence the closure J of the algebraic sum of all I ∈ I belongs to I.
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Two classes of invariant algebras

We define two types of invariant algebras according to the extreme
cases for their greatest ideals:
A : codim J = 1,
B : J = {0}.

They can be stated in terms of the natural actions of G in A and
MA:

A ∈ A ⇐⇒ G has the unique fixed point in MA,

A ∈ B ⇐⇒ A has no proper G -invariant ideals.
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Two parts of MA

Set B = A/J and C = J + C. Let ε denote element of MC which
corresponds to the maximal ideal J. Note that ε is the fixed point of G in
MC . Put

M′B = {ϕ ∈MA : ϕ = 0 on J},
M′C = {ϕ ∈MA : ϕ 6= 0 on J}.

Then MA = M′B ∪M′C and M′B ∩M′C = ∅.

Let π : A→ B be the natural projection and ρ : A∗ → C∗ be the
operator of restriction to J.

The mapping ϕ→ ϕ ◦ π is a homeomorphism between MB and M′B . The
restriction operator ρ is a continuous bijection between M′C and
MC \ {ε}.
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Here is a construction for extension of ϕ ∈MC \ {ε} to A. It follows the
proof of [1, Theorem 6.1]. Let u ∈ J be such that ϕ(u) = 1 and put

ψ(f ) = ϕ(fu)

for f ∈ A. Then independently of the choice of u we have ψ(1) = 1,

ψ(f ) = ϕ(f ) for all f ∈ J,

and

ψ(f1f2) = ϕ(f1f2u) = ϕ(f1f2u
2) = ϕ((f1u)(f2u))

= ϕ(f1u)ϕ(f2u) = ψ(f1)ψ(f2)

for all f1, f2 ∈ A.
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Thus, a possible way to solve the problem is to study algebras of
the classes A, B and method of gluing MB with MC \ {ε}.
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Another characterizations of J,A,B

Set
(a, b) = Tσ(ab) =

∫
M

a(x)b(x) dx .

This is a bilinear G -invariant form on the closure H of A in L2(M) and,
moreover, (a, b) is the scalar product in H.

J consists of a ∈ A such that (a, f ) = 0 for all f ∈ A.
This is true because (ab, f ) = (a, bf ) = 0 for all a ∈ J and b, f ∈ A.

A ∈ A if and only if a, b ∈ A and (a, 1) = 0 imply (a, b) = 0.
The form has rank 1 and J = 1⊥.

A ∈ B if and only if the form ( , ) is non-degenerate on A.
Due to the characterization of J, the form ( , ) degenerates on J.
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Uniform algebras: representing measures and hulls

Recall that a uniform algebra on a Hausdorff compact Q is a closed
subalgebra of the Banach algebra C (Q) of all continuous functions
on Q which contains constant functions.

A representing measure of ϕ ∈MA is an extension of ϕ onto C (M)
which preserves its norm. Since ϕ(1) = 1 and ‖ϕ‖ = 1, it is a
probability measure. The set Mϕ of representing measures for ϕ is
a ∗-weakly compact convex set.

For a set E ⊆ Q, the A-hull Ê of E is equal to the set of ϕ ∈MA

such that |ϕ(f )| 6 ‖f ‖E for all f ∈ A.
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Uniform algebras: representing measures and hulls

Let ε ∈MA be the fixed point of G . Then Mε is G -invariant.
Hence it contains the fixed point σ.

Let E ⊆ M be closed, ϕ ∈MA. Then ϕ ∈ Ê if and only if there is
a representing measure with support in E .

V.M. Gichev Spectra of invariant function algebras



Antisymmetric algebras

A uniform algebra A ⊆ C (Q) is called antisymmetric if any real
valued function in A is constant.

A set E ⊆ Q is called a set of antisymmetry if every real on E
function f ∈ A is constant on E .

If two sets of antisymmetry have a common point, then their union
is also a set of antisymmetry.

Every set of antisymmetry is contained in a maximal one.
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Antisymmetric algebras
Example

Let T be the unit circle |z | = 1 in C and D be the unit disc bounded by T.
Let A(D) be the algebra of functions holomorphic on D and continuous
up to the boundary. For every f ∈ A(D) the Taylor series converges in D:

f (z) = c0 + c1z + c2z
2 + · · · .

The complex conjugate function f also admits the Taylor decomposition:

f (z) = c0 + c1z + c2z
2 + · · · .

It is not holomorphic, i.e. f /∈ A(D). Thus A(D) is antisymmetric.
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The Bishop–Shilov decomposition

Theorem (Bishop–Shilov decomposition)

Let A be a uniform algebra on compact Q and Q be the family of
all maximal sets of antisymmetry for A. Then
(i) the sets in Q cover Q, they are closed and pairwise disjoint,
(ii) f ∈ C (Q) belongs to A if and only if f |E ∈ A|E for any E ∈ Q.

If every set of antisymmetry is a single point, then this theorem
becomes the Stone–Weierstrass theorem.
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The Bishop–Shilov decomposition for invariant algebras
Let A be an invariant algebra. Denote by Qx the set from Q which
contains x ∈ M and put o = [K ], Ao = A|Qo , and
K ′ = {g ∈ G : go ∈ Qo}. Then

K ′ = {g ∈ G : gQo = Qo}.

According to the Bishop–Shilov decomposition, we have

K ′ is a closed subgroup of G such that K ′ ⊇ K and Q consists of
its orbits.

A contains all K ′-invariant continuous functions.

Ao is an antisymmetric invariant algebra on Qo .

A = {f ∈ C (M) : Tg f
∣∣
Qo
∈ Ao}.

The space M = G/K can be treated as the total space of the equivariant
fibration with the base M ′ = G/K ′ and fiber F = K ′/K . We can get MA

filling F with the space MAo .
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The class A

Let µ denote the invariant probability measure on M.

If A ∈ A, then

(i) µ ∈Mε,

(ii) A is antisymmertric.

To prove (i), note that the convex ∗-weakly compact set Mε is
G -invariant and µ is its fixed point.

Let f ∈ A be a real nonconstant function. Replacing f with f − c , for a
suitable c we have ∫

f dµ = 0 and
∫

f 2 dµ > 0.

On the other hand,

ε(f 2) = ε(f )2 =

(∫
f dµ

)2

= 0.

This proves (ii).
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The class A

Recall that Ao is “the antisymmetric part” of an invariant algebra A
in the Bishop–Shilov decomposition. Let κ be the Haar measure of
K ′. Then T 2

κ = Tκ.

Theorem
If Ao ∈ A, then

Tκ is a projection onto the algebra of all K ′-invariant functions
in C (M), which is isometrically isomorphic to C (M ′).
Tκ is an endomorphism of A and kerTκ = J.

The first assertion holds due to the Bishop-Shilov decomposition
theorem. It is easy to prove the second.
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Orbits of linear groups

Every compact group G acting in a complex linear space V admits
the complexification G C. Let v ∈ V . We denote M = Ov = Gv ,
MC = OC

v = G Cv and call them real and complex orbits,
respectively.
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The class A for orbits of linear groups

Let 0 be the unique fixed point of G in V , M = Ov for some v ∈ V , and
0 belongs to the closure of MC. Then {0} is the unique closed orbit in it.
The set of all such v is the nilpotent cone (or null-cone) N . It can be
defined as follows:

p(v) = 0 for any G -invariant polynomial p such that p(0) = 0.

Set P0 = {p ∈ P : p(0) = 0}. Since any invariant polynomial can be
obtained by averaging over G ,

v ∈ N ⇔
∫
G

p(gv) dg = 0 for all p ∈ P0.

It follows that P(M) ∈ A if and only if v ∈ N . Then M̂ ⊂ N .
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The class B for orbits of linear groups

Let’s denote A = P(M) for brevity.

The following conditions are equivalent:

(i) A ∈ B,

(ii) MC is closed in V .

(iii) M̂ ⊂ MC.

(i) ⇒ (ii): If MC is not closed, then the ideal generating by polynomials
which vanish on the closed orbit in the closure of MC is invariant and
proper in A.
(ii) ⇒ (iii): If p ∈ P vanishes on M, then p = 0 on M̂ by definition of
the polynomial hull. Hence points of M̂ satisfy the finite number of
equations which distinguish MC.
(iii) ⇒ (i): Let I be a maximal ideal which contains J. Since M̂ ⊂ MC,
there is u ∈ MC such that I = {f ∈ A : f (u) = 0}. If f ∈ J, then f = 0
on Ou. Hence f = 0 on its complexification MC. It follows that J = 0.
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Commutative homogeneous spaces

Here are three equivalent definitions of a commutative homogeneous
space (G is compact and connected).

(1) M is multiplicity free: the quasiregular representation of G in L2(M)
contains every irreducible unitary representation of G with
multiplicity 0 or 1.

(2) (G ,K ) is a Gelfand pair: the convolution algebra of all left and right
K -invariant functions in L1(G ) (or measures) is commutative.

(3) MC is spherical: a Borel subgroup of GC has an open orbit in MC.
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Invariant algebras on commutative homogeneous spaces

Theorem (G.,[3], 2008)

Let A be an invariant algebra on a commutative homogeneous
space M. Then

if A is antisymmetric, then A ∈ A,
if A ∈ B, then A = A.

The assumption of commutativity is essential. There are
antisymmetric A ∈ B.

Corollary

Let M be commutative. Then the projection A→ B = A/J
extends to an endomorphisms of A with kernel J. The algebra B is
isometrically isomorphic to C (M ′) for some homogeneous space M ′.
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Commutative homogeneous spaces as real forms

A real form of a complex manifold is the set of fixed point of its
antiholomorphic involution. In what follows the real forms are
compact.

Corollary

Let MC be closed. If a real orbit M in MC is a commutative
homogeneous space, then M is a real form of MC.
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Polynomially convex orbits

Real forms of closed complex orbits can be characterized by their
polynomial convexity.

Theorem (G., Latypov, [4], 2001)

Let G ⊂ GL(n,C) be a compact connected group, v ∈ Cn. Then

(i) MC is closed if and only if it contains a polynomially convex real
orbit,

(ii) if MC is closed, then M̂ = M if and only if M is a real form of MC,

(iii) if MC is closed and M is a real form of MC, then P(M) = C (M).
The converse is also true.
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Example of an antisymmetric algebra from B

Set G = SU(2). It is a real form of the group GC = SL(2,C) defined by
the antiholomophic involution X → (X

T
)−1. Let’s consider the adjoint

action of G in the Lie algebra gC = sl(2,C): Ad(g)ζ = g−1ζg . Here is
the standard basis of gC:

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
.

The group G consists of matrices
(

a −b
b a

)
, where |a|2 + |b|2 = 1.

Actually, in su(2) ∼= so(3) acts the group SO(3) whose complexification
is SO(3,C) ∼= SL(2,C)/{±1}.
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Example of an antisymmetric algebra from B

Let 〈ζ, ω〉 be the bilinear form Tr ζω on su(2). Set

v = h + re =

(
1 r
0 −1

)
,

where r > 0. Then MC is the quadric 〈ζ, ζ〉 = 2 and

M = Ov = MC ∩ {〈ζ∗, ζ〉 = 2 + r2} ∼= RP3 ∼= SO(3),

where ζ∗ = −ζT
.

Setting r = 0 we get the real form MR ∼= S2 of MC.
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Example of an antisymmetric algebra from B

Note that MC contains the line L = h + Ce. Clearly,

h + Tρe ⊆ M,

h + Dρe ⊆ M̂,

where T is the unit circle that bounds the unit disc D, and ρ =
√
2 + r2.

It follows that

we get M̂ applying Ad(g) to the disc M̂ ∩ L, where g runs over
SU(2),

this also proves that P(M) is antisymmetric,

it belongs to B because MC is closed.
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Example of an antisymmetric algebra from B

The algebra A = P(M) can be defined as the algebra of all continuous
functions on M which admit holomorphic extension to the disc in the line
gL = g(h + Ce) bounded by the circle M ∩ gL for all g ∈ SU(2).

There is another definition of A. Since dimR M = 3 and dimC M
C = 2,

the tangent space TpM contains a complex line for all p ∈ M. This is a
CR-structure on M. It defines the algebra of smooth CR-functions whose
differentials are complex linear on on these lines. The uniform closure of
this algebra is equal to the algebra A.

Problem
Describe maximal ideal spaces of antisymmetric algebras without proper
invariant ideals.
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Remark

A CR-manifold is called embeddable if it admits an embedding into Cn

which induces its CR-structure. The CR-structure of the example above
on M ∼= SO(3) ∼= S3/Z2 can be lifted to S3. It is known as an example
of a locally embeddable CR-manifold which is not embeddable globally.
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Algebras of class B and geometry of MC

Let K ,KC be the stable subgroups of v in G and GC, respectively. Clearly,
KC ⊆ KC. If KC = KC, then M is a real form of MC. Every h ∈ KC \ KC

can be associated with an analytic annulus or strip attached to M.

There is the polar decomposition

h = gs,

where g ∈ G , s = exp(iξ), and ξ ∈ g. Since hv = v , we have

sv = g−1v ∈ M.

Setting

λ(z) = exp(zξ)v , 0 < Imz < 1,

we get an analytic strip attached to M.
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KC ⊆ KC. If KC = KC, then M is a real form of MC. Every h ∈ KC \ KC

can be associated with an analytic annulus or strip attached to M.

There is the polar decomposition

h = gs,

where g ∈ G , s = exp(iξ), and ξ ∈ g. Since hv = v , we have

sv = g−1v ∈ M.

Setting

λ(z) = exp(zξ)v , 0 < Imz < 1,

we get an analytic strip attached to M.
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Bi-invariant algebras as sub-bialgebras of C (G )

Let X ,Y be compact. We consider C (X × Y ) as a completion of
C (X )⊗ C (Y ) and denote it as C (X ) ⊗̂C (Y ). It is a bialgebra
with the comultiplication ∆f (g , h) = f (gh).

Theorem

A closed linear subspace A ⊆ C (G ) is an bi-invariant algebra if and
only if it satisfies the following conditions:

1 ∈ A,

A · A ⊆ A,

∆A ⊆ A ⊗̂A.
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Bi-invariant algebras as sub-bialgebras of C (G )

For any f ∈ A the function f (gh) can be approximated uniformly
by sums

∑
uj(g)vj(h), where uj , vj ∈ A. For every couple

µ, ν ∈ M(G )

µ⊗ ν(u ⊗ v) = µ(uj)ν(vj).

If µ ∈ A⊥ or ν ∈ A⊥, then µ(u)ν(v) = 0. Hence A⊥ is an ideal of
M(G ) and A⊥ is G × G -invariant.
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Bi-invariant algebras on groups

For any compact group G , the space G × G/G ∼= G is
commutative. If A is an G × G -invariant algebra on G , then

there is a natural semigroup structure in MA,
the inversion in G extends to an involutive antiholomorphic
antiautomorphism ∗ : MA →MA,
each ϕ ∈MA admits the polar decomposition ϕ = gs, there
g ∈ G and s is symmetric (i.e., s∗ = s),
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Bi-invariant algebras on groups

There is a natural preorder in the set I of idempotents:

j � k ⇔ jk = kj = j .

The set I is a complete lattice.

In particular, there is the least idempotent ε in I.

For any symmetric s, there exists the unique one parameter
symmetric semigroup γ : R+ →MA such that γ(1) = s,

it extends to a homomorphism C+ →MA such that f ◦ γ is
holomorphic on C+,

it has a limit limRe z→∞ γ(z) in I.
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Bi-invariant algebras on groups

Every j ∈ I relates to a subgroup G j of MA with the unit j .
Moreover, there is a convex closed pointed Ad(G )-invariant cone
C j in the Lie algebra gj such that the set G j exp(iC j) is a
subsemigroup of the complexification of G j . It is a complex Lie
semigroup. The family of these semigroups covers MA.
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Thank you for your attention!
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