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Basic Definitions
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Let F be a field, A be a linear associative F -algebra and E is a
subspace in A (but E not necessary subalgebra of A) which generate A
how linear F -algebra.

In this case, we call E a multiplicative vector space (in short, an
L-space) over the field F . The algebra A will be called enveloping for
the space E, and the space E will be called embedded in the algebra A.

The identity of an L-space E over a field F (embedded in an F -algebra
A) is an associative polynomial f(x1, x2, . . . , xn) which equal to zero in
A if, instead of its variables x1, x2, . . . , xn we substitute any elements
from E.
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In this form, the concept of a multiplicative vector space and his
identity was introduced in 2010 by I.M. Isaev and the speaker.
However, (direct) analogs of this concept have been studied earlier.

In 1978 I. V. L’vov considered algebras of the form V = V ⊕ E, where
V is a vector space and E ⊆ EndFV . Nonzero products of elements of
this algebra are given by the rule: vieij = vj . It’s clear that
V ∈ Var〈x(yz) = 0〉. The nonassociative polynomial
zf(Rx1 , Rx2 , . . . , Rxn) is an identity of the algebra V iff the associative
polynomial f(x1, x2, . . . , xn) is equal to zero when substituting instead
of variables linear combinations of elements from E.

In fact, this construction uses the concept of a multiplicative vector
space.
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In 1973, Yu. P. Razmyslov introduced the concept of a weak identity of
an associative Lie pair (A,L), where L is a Lie algebra and A is its
associative enveloping.

A weak identity of a pair (A,L) is an associative polynomial
f(x1, x2, . . . , xn) that is equal to zero in the algebra A when substituted
instead of variable x1, x2, . . . , xn elements of the algebra L.

Following the above construction, the identity of the multiplicative
vector space E (with the enveloping algebra A) can be considered (if
necessary) as a weak identity of the pair (A,E). The pair (A,E) in this
case will be called a multiplicative vector pair.
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Consider the set

E0 =

{(
α α
0 β

)∣∣∣∣α, β ∈ F} .
This set is a vector space over the field F , but it is not an F -algebra.
The algebra T2(F ) of upper triangular matrices is the enveloping
algebra for E0.

Consider the polynomial St3(x1, x2, x3) =
∑
σ∈S3

(−1)σxσ(1)xσ(2)xσ(3).

Since dimF E0 = 2, the polynomial St3(x1, x2, x3) is the identity of the
F -space E0.

But this polynomial is not an identity of the algebra T2(F ), because
St3(e11, e12, e22) = e12 6= 0.
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Identities of Vector Spaces
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Let F 〈X〉 be a free associative algebra and ∅ 6= G ⊆ F 〈X〉. By T (G)
we denote the T -ideal of the algebra F 〈X〉 generated by the set G, and
by L(G) we denote the ideal of F 〈X〉 generated by the polynomials of
the set G (as an ideal) and closed with respect to substitutions instead
of variables of linear combinations of variables. These ideals will be
called L-ideals. It’s clear that L(G) ⊆ T (G).

The set of all identities of a vector space E is a L-ideal of F 〈X〉. We
will denote such a L-ideal by L(E).

The converse is also true: every L-ideal of the algebra F 〈X〉 is the set
of identities of some L-space.
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The identity f of the L-space E follows from the identities f1, f2, . . . if
f ∈ L(f1, f2, . . . ).

Thus, for obtaining a corollary from the identity f(x1, x2, . . . , xn),
instead of variables x1, x2, . . . , xn, only linear combinations of variables
can be substituted. If we substitute the product of variables instead of
variables x1, x2, . . . , xn in f(x1, x2, . . . , xn), the resulting polynomial
may not be an identity of the L-space.

For example, the space E0 = 〈e11 + e12, e22〉F satisfies the identity
St3(x, y, z) = 0. However, E0 does not satisfy the identity
St3(xt, y, z) = 0. Indeed, if x = e11 + e12, t = e22, y = e11 + e12, z = e22
then St3(xt, y, z) = St3(e12, e11 + e12, e22) = −e12 6= 0.
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If there exists a finite set G of identities of a multiplicative vector space
E, from which all the identities of this space follow, then the space E is
called a finitely based L-space (FB-space) with a basis of identities G.

If such a finite set does not exist for the L-space E, then we say that
the L-space E is infinitely based or not finitely based (NFB-space).

FB-algebras and NFB-algebras are similarly defined in other classes of
algebras which may be related to Specht’s problem [Specht, 1950].
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The construction of examples of NFB-algebras is an important
direction in the study of varieties of algebras.

There are known examples of NFB-algebras in various classes of
algebraic systems:

in the class of groupoids [Lyndon, 1954];
in the class of semigroups [Perkins, 1969];
in the class of rings and linear algebras [Polin, 1976];
in the class of loops [Vaughan-Lee, 1979].

Let us give examples of FB-spaces and NFB-spaces.
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Proposition 1.1 [Isaev, K., 2010].
Let F be an infinite field of arbitrary characteristic. The L-spaces
A1 = 〈e11, e12〉F and A2 = 〈e11, e21〉F over the field F is an FB-spaces
with a bases of identities {[x, y]z} and {x[y, z]} respectively.

Theorem 1.1 [Isaev, K., 2010].
Let F be an infinite field of arbitrary characteristic. The vector space
A = A1 ⊕A2 over the field F is an NFB-space with a basis of identities:

{St3(x, y, z), x[y, u]v, [x, y][u, v], [x, y]z1z2 . . . zm[u, v]|m = 1, 2, . . . }.

Note that the space A = A1 ⊕A2 is an NFB-space over an arbitrary
infinite field. However, any linear associative algebra over a field of
characteristic zero has a finite basis of its identities [Kemer, 1987].
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Proposition 1.2 [Isaev, K., 2010].
Let F = GF (q) be an finite field of q elements. The L-spaces
A1 = 〈e11, e12〉F and A2 = 〈e11, e21〉F over the field F is an FB-spaces
with a bases of identities {[x, y]z, (xq − x)y} and {x[y, z], x(yq − y)}
respectively.

Theorem 1.2 [Isaev, K., 2010].
Let F = GF (q) be an finite field of q elements. The vector space
A = A1 ⊕A2 over the field F is an NFB-space with a basis of identities:

{St3(x, y, z), x[y, u]v, [x, y][u, v], x(y−yq)z, (x−xq)(y−yq), [x, y](z−zq),
(x− xq)[y, z], [x, y]z1z2 . . . zm[u, v]|m = 1, 2, . . . }.

Kislitsin A.V. (AltSPU, OmSU) Identities of Spaces of Linear . . . 28.09.2023 13 / 57



Proposition 1.2 [Isaev, K., 2010].
Let F = GF (q) be an finite field of q elements. The L-spaces
A1 = 〈e11, e12〉F and A2 = 〈e11, e21〉F over the field F is an FB-spaces
with a bases of identities {[x, y]z, (xq − x)y} and {x[y, z], x(yq − y)}
respectively.

Theorem 1.2 [Isaev, K., 2010].
Let F = GF (q) be an finite field of q elements. The vector space
A = A1 ⊕A2 over the field F is an NFB-space with a basis of identities:

{St3(x, y, z), x[y, u]v, [x, y][u, v], x(y−yq)z, (x−xq)(y−yq), [x, y](z−zq),
(x− xq)[y, z], [x, y]z1z2 . . . zm[u, v]|m = 1, 2, . . . }.

Kislitsin A.V. (AltSPU, OmSU) Identities of Spaces of Linear . . . 28.09.2023 13 / 57



Theorem 1.3 [Isaev, K., 2010].
Let F be an infinite field of arbitrary characteristic. The multiplicative
vector space T2(F ) of upper triangular matrices over the field F is an
NFB-space with a basis of identities:

{[x, y][u, v], [x, y]z1z2 . . . zm[u, v]|m = 1, 2, . . . }.

Theorem 1.4 [Isaev, 1989].
Let F = GF (q) be an finite field of q elements. The multiplicative
vector space T2(F ) of upper triangular matrices over the field F is an
NFB-space with a basis of identities:

G = {[x, y][u, v], (x− xq)(y − yq), [x, y](z − zq),
(x− xq)[y, z], [x, y]z1z2 . . . zm[u, v]|m = 1, 2, . . . }.
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Theorem 1.5 [Isaev, K., 2011].
Let F be a field of characteristic zero. The multiplicative vector space
E0 = 〈e11 + e12, e22〉F is an NFB-space with a basis of identities:

{St3(x, y, z), [x, y][u, v], [x, y]z1z2 . . . zm[u, v]|m = 1, 2, . . . }.

Theorem 1.6 [Isaev, K., 2015].
Let F = GF (q). The multiplicative vector space E0 = 〈e11 + e12, e22〉F
over the field F is an NFB-space with a basis of identities:

{xq2−q+1 − x, St3(x, y, z), [x, y][u, v], (x− xq)(y − yq),
[x, y](z − zq), (x− xq)[y, z], [x, y]z1z2 . . . zk[u, v]|k = 1, 2, . . . }.

Note that the space E0 is not an F -algebra.
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A finite NFB-algebra (of arbitrary signature) is called inherently
nonfinitely based (INFB-algebra) if any locally finite variety containing
this algebra does not have a finite basis of identities. Sometimes
inherently nonfinitely based algebras are called essentially nonfinitely
based.

Any finite algebra containing an INFB-algebra as a subalgebra has no
finite basis of identities. Thus, if we construct an example of
INFB-algebra, then a series of examples of NFB-algebras is
automatically constructed.
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There are known examples of INFB-algebras in various classes of
algebraic systems:

in the class of groupoids [Lyndon, 1954];
in the class of semigroups [Sapir, 1987];
in the class of rings and linear algebras [I., 1989].

In 1987 M.V. Sapir gave a complete description of INFB-semigroups.

Let us give examples of INFB-spaces.
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Theorem 2.1 [Isaev, K., 2013].
Let F = GF (q) be an finite field of q elements. The multiplicative
vector space T2(F ) of upper triangular matrices over the field F is an
INFB-space.

It follows from this theorem that the multiplicative vector space of
matrices of any order over a finite field has no finite basis of identities.

However, inherently nonfinitely based algebras and multiplicative
vector spaces can be considered only for algebras and L-spaces over a
finite field.
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Consider a monomial w = w(x1, x2, . . . , xn; y1, y2, . . . , yk) ∈ F 〈X〉 that
is linear in each of the variables x1, x2, . . . , xn. Let C

(w)
n = 0 be the

Capelli identity and Cap(n) = Var〈C(w)
n = 0〉 the variety of linear

algebras satisfying all possible Capelli identities for a fixed n.

A variety M of linear algebras over a field F is called strongly
nonfinitely based (SNFB-variety) if M ⊆ Cap(k) for some k and any
variety of F -algebras containing M and contained in Cap(n) for some n
is NFB-variety.
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The algebra generating the SNFB-variety of algebras will be called the
SNFB-algebra.

Any finite dimensional algebra containing an SNFB-algebra as a
subalgebra has no finite basis of identities.

Strongly nonfinitely based multiplicative vector spaces can be defined
similarly.

Let us give examples of SNFB-spaces.
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Theorem 2.2 [Isaev, K., 2013].
Let F be an arbitrary field. The multiplicative vector space T2(F ) of
upper triangular matrices over the field F is an SNFB-space.

Theorem 2.3 [Isaev, K., 2015].
Let F be an field of characteristic zero. The multiplicative vector space
E0 = 〈e11 + e12, e22〉F over the field F is an SNFB-space.

Theorem 2.4 [Isaev, K., 2013].
Let F be an arbitrary field. The multiplicative vector space
A = A1 ⊕A2 over the field F is an NFB space, but it is not an
SNFB-space.
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Let G ⊆ F 〈X〉. The class of all multiplicative vector pairs of the form
(A,E) satisfying all the identities of the set G is called an L-variety
defined by the set of identities G and is denoted by VarL〈g = 0 | g ∈ G〉.

If G is a basis of identities in the space E, then the L-variety
VarL〈g = 0 | g ∈ G〉 is denoted by VarLE and called the L-varieties
generated by the space E.

If we need information about the enveloping algebra A of the space E,
then VarL〈g = 0 | g ∈ G〉 is denoted as VarL(A,E) and called the
L-varieties generated by the pair (A,E).

Using the concept of an L-variety, it was possible to partially describe
the FB-space and SNFB-spaces.
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Theorem 3.1 [K., 2015].
Let F be a field of characteristic zero, A a finite dimensional L-space
over the field F , which is also an F -algebra with a unity element. An
L-space A has a finite basis of identities iff T2(F ) 6∈ VarLA.

Theorem 3.2 [K., 2015].
Let F be a field of characteristic zero, A a finite dimensional L-space
over the field F , which is also an F -algebra with a unity element. An
L-space A is strongly infinitely based iff T2(F ) ∈ VarLA.
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It can be shown that any class of multiplicative vector pairs is an
L-variety iff it is closed with respect to taking subpairs, homomorphic
images of pairs, and direct products of pairs, that is, for L-varieties an
analogue of Birkhof’s theorem holds.

In the study of L-varieties we can pose the same problems as for
varieties of linear algebras.
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An L-varietyM is called Specht if any pair (A,E) ∈M has a finite
basis of identities.

The union of the L-varietiesM1 andM2 is the smallest L-variety
containingM1 andM2.

Let F is an arbitrary field, A1 = 〈e11, e21〉F , A2 = 〈e11, e12〉F is the
vector spaces over field F ,M1 = VarLA1,M2 = VarLA2,
M = VarL(A1 ⊕A2). It’s obvious thatM =M1 ∪M2.

Note thatM1 = VarL〈x[y, z] = 0〉,M2 = VarL〈[x, y]z = 0〉.
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Theorem 3.3 [K., 2018].
Let F be an arbitrary field. An infinitely based L-varietyM is the
union of the Specht L-varietiesM1 andM2.

Corollary 3.1.
Let F be an infinite field. An arbitrary L-space over the field F
satisfying either the identity [x, y]z = 0 or the identity x[y, z] = 0 has a
finite basis of identities.

Corollary 3.2.
Let F = GF (q). An arbitrary L-space over the field F satisfying either
the identities [x, y]z = 0 and (xq − x)y = 0 or the identities x[y, z] = 0
and x(yq − y) = 0 has a finite basis of identities.
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The following result of V. S. Drensky strengthens corollary 3.1 and
corollary 3.2.

Theorem 3.4 [Drensky, 2021?].
Over an arbitrary field every L-ideal which contains one of the weak
polynomial identities [x, y]z or x[y, z] is finitely generated.

V. S. Drensky also received a description of all L-ideals containing a
polynomial [x, y]z (or x[y, z]).
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Theorem 3.5 [Drensky, 2021?].
Over a field of characteristic zero the following L-ideals are all L-ideals
which contain the weak identity [x, y]z:

The L-ideal generated by [x, y]z;
The L-ideal generated by [x, y]z and the weak identity xn[x, y],
n ≥ 0;
The L-ideal generated by [x, y]z and the weak identity xm, m ≥ 1;
The L-ideal generated by [x, y]z and the weak identities xm, m ≥ 2
and xn[x, y], 0 ≤ n ≤ m− 2.

There is also a dual theorem for the weak identity x[y, z].
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Let further F be a field of characteristic zero and
N1 = VarL〈xy[z, t] = 0〉, N2 = VarL〈[x, y]zt = 0〉.

Theorem 3.6 [K., Unpublished].
Let F be a field of characteristic zero. L-varieties N1 and N2 are Specht.

Corollary 3.3.
Let F be a field of characteristic zero. An arbitrary L-space over the
field F satisfying either the identity [x, y]zt = 0 or the identity
xy[z, t] = 0 has a finite basis of identities.

It can be shown that N = N1 ∪N2 is not a Specht L-variety.
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Recall that a T -ideal generated by the set G (in the notation T (G)) is
an ideal of the algebra F 〈X〉 such that f(w1, w2, . . . , wn) ∈ F 〈X〉 for all
f(x1, x2, . . . , xn) ∈ T (G), w1, w2, . . . , wn ∈ F 〈X〉 and T (G) is the
smallest ideal containing G. The set of all identities in linear algebra
forms a T -ideal.

An ideal of the algebra F 〈X〉 that is closed under linear permutations of
variables will be called an L-ideal. The smallest L-ideal containing the
set G will be called the L-ideal generated by the set G. It is clear that
the set of identities of a multiplicative vector space forms an L-ideal.

Proposition 3.1 [K., 2018, 2022].
Let be G ⊆ F 〈X〉. If [x, y]z ∈ G (x[y, z] ∈ G) then L(G) = T (G).
However, If [x, y]zt ∈ G (xy[z, t] ∈ G) then L(G) $ T (G)

Kislitsin A.V. (AltSPU, OmSU) Identities of Spaces of Linear . . . 28.09.2023 30 / 57



Recall that a T -ideal generated by the set G (in the notation T (G)) is
an ideal of the algebra F 〈X〉 such that f(w1, w2, . . . , wn) ∈ F 〈X〉 for all
f(x1, x2, . . . , xn) ∈ T (G), w1, w2, . . . , wn ∈ F 〈X〉 and T (G) is the
smallest ideal containing G. The set of all identities in linear algebra
forms a T -ideal.

An ideal of the algebra F 〈X〉 that is closed under linear permutations of
variables will be called an L-ideal. The smallest L-ideal containing the
set G will be called the L-ideal generated by the set G. It is clear that
the set of identities of a multiplicative vector space forms an L-ideal.

Proposition 3.1 [K., 2018, 2022].
Let be G ⊆ F 〈X〉. If [x, y]z ∈ G (x[y, z] ∈ G) then L(G) = T (G).
However, If [x, y]zt ∈ G (xy[z, t] ∈ G) then L(G) $ T (G)

Kislitsin A.V. (AltSPU, OmSU) Identities of Spaces of Linear . . . 28.09.2023 30 / 57



Recall that a T -ideal generated by the set G (in the notation T (G)) is
an ideal of the algebra F 〈X〉 such that f(w1, w2, . . . , wn) ∈ F 〈X〉 for all
f(x1, x2, . . . , xn) ∈ T (G), w1, w2, . . . , wn ∈ F 〈X〉 and T (G) is the
smallest ideal containing G. The set of all identities in linear algebra
forms a T -ideal.

An ideal of the algebra F 〈X〉 that is closed under linear permutations of
variables will be called an L-ideal. The smallest L-ideal containing the
set G will be called the L-ideal generated by the set G. It is clear that
the set of identities of a multiplicative vector space forms an L-ideal.

Proposition 3.1 [K., 2018, 2022].
Let be G ⊆ F 〈X〉. If [x, y]z ∈ G (x[y, z] ∈ G) then L(G) = T (G).
However, If [x, y]zt ∈ G (xy[z, t] ∈ G) then L(G) $ T (G)

Kislitsin A.V. (AltSPU, OmSU) Identities of Spaces of Linear . . . 28.09.2023 30 / 57



An L-varietyM is called locally finite if for any pair (A,E) ∈M,
where E is a finite dimensional vector space, the algebra A is finite.

A pair (A,E) will be called critical if the algebra A is finite and the pair
(A,E) does not belong to the L-variety generated by its proper factors.

Any locally finite L-variety is generated by its critical pairs.

Critical rings and algebras are well studied. They are an effective means
for the study of varieties of rings and linear algebras.
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Theorem 3.7 [Isaev, Unpublished].
Let M2(F ) be the algebra of second-order matrices over a finite field
F = GF (q). Pair (M2(F ),M2(F )) is critical.

Theorem 3.8 [Isaev, K., Unpublished].
Let T2(F ) be the algebra of upper triangular matrices of second-order
over a finite field F = GF (q). Pair (T2(F ), T2(F )) is critical.

Theorem 3.9 [Isaev, K., Unpublished].
Let F = GF (q), A1 = 〈e11, e12〉F , A2 = 〈e11, e21〉F . Pairs (A1, A1) and
(A2, A2) are critical.
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A variety M of linear algebras is called a almost θ-variety if M does not
satisfy the θ property, but any proper subvariety of the variety M
satisfies this property.

Almost θ-varieties of algebras play an important role in the study of
varieties of linear algebras.

In the theory of associative rings and linear algebras, almost θ-varieties
are related to the indicator characterization of varieties.
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If the property θ is a concrete identity, then in the class of associative
rings and linear algebras there are descriptions of almost θ-varieties:

almost commutative varieties of rings [Maltsev, 1976];
almost commutative varieties of Φ-algebras, where Φ is a
Noetherian commutative Jacobson ring with unity element
[Maltsev, 1996];
almost Engel varieties of the linear algebras [Finogenova, 2004];
almost permutative varieties of algebras over an infinite field
[Finogenova, 2013].

Description problems can be formulated for almost θ-varieties of
L-spaces.
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Theorem 3.10 [K., 2018].
Let F be a finite field andM a nonnilpotent L-variety generated by an
F -algebra considered as a vector space. Then an L-varietyM is almost
commutative if and only if it is generated by one of the following spaces:

A1 = 〈e11, e12〉F , A2 = 〈e11, e21〉F

Corollary 3.4.
Let

A3 =

{(
a b
0 σ(a)

)∣∣∣∣ a, b ∈ P} ,
where σ ∈ AutP , σ 6= 1 and the field of invariants P σ is the only
maximal subfield of P containing F . L-varietyM3 = VarLA3 contains
a noncommutative proper L-subvariety.
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Theorem 3.11 [K., 2021].
Let F be a arbitrary field andM a L-variety generated by an
F -algebra considered as a vector space. Then an L-varietyM is almost
Engel if and only if it is generated by one of the following spaces:

A1 = 〈e11, e12〉F , A2 = 〈e11, e21〉F

Corollary 3.5.
Let

A3 =

{(
a b
0 σ(a)

)∣∣∣∣ a, b ∈ P} ,
where σ ∈ AutP , σ 6= 1 and the field of invariants P σ is the only
maximal subfield of P containing F . L-varietyM3 = VarLA3 contains
a non-Engel proper L-subvariety.
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An L-varietyM is called a minimal nonzero L-variety (with respect to
the inclusion) or an atom if for any L-variety N it follows from
inclusion N ⊆M that eitherM = N or N is the zero L-variety.

In 1956 A. Tarski showed that atoms in the class of rings are generated
either by a simple field GF (p) or by a ring with zero multiplication.

The problem of describing atoms in the class of L-spaces is of interest
for study.

Kislitsin A.V. (AltSPU, OmSU) Identities of Spaces of Linear . . . 28.09.2023 37 / 57



An L-varietyM is called a minimal nonzero L-variety (with respect to
the inclusion) or an atom if for any L-variety N it follows from
inclusion N ⊆M that eitherM = N or N is the zero L-variety.

In 1956 A. Tarski showed that atoms in the class of rings are generated
either by a simple field GF (p) or by a ring with zero multiplication.

The problem of describing atoms in the class of L-spaces is of interest
for study.

Kislitsin A.V. (AltSPU, OmSU) Identities of Spaces of Linear . . . 28.09.2023 37 / 57



An L-varietyM is called a minimal nonzero L-variety (with respect to
the inclusion) or an atom if for any L-variety N it follows from
inclusion N ⊆M that eitherM = N or N is the zero L-variety.

In 1956 A. Tarski showed that atoms in the class of rings are generated
either by a simple field GF (p) or by a ring with zero multiplication.

The problem of describing atoms in the class of L-spaces is of interest
for study.

Kislitsin A.V. (AltSPU, OmSU) Identities of Spaces of Linear . . . 28.09.2023 37 / 57



Theorem 3.12 [К., 2022].
An L-variety of multiplicative vector spaces over a field GF (2) is an
atom iff it coincides with eitherM0, orM1, orMp(x), where

M0 = VarL〈xy = 0〉,
M1 = VarL〈[x, y] = 0, x+ x2 = 0〉,

Mp(x) = VarL〈[x, y] = 0, x2y = xy2, x · p(x) = 0〉,

p(x) is an irreducible polynomial over the field GF (2).

Note that the identities of the L-varietyMp(x) do not define an atom in
the class of linear algebras over the field GF (q).
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Identities of Nonassociative Linear Algebras
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Let P = Var〈x(yz) = 0〉 be the variety of left-nilpotent algebras of
index 3. This variety of linear algebras was first considered in 1976 by
S.V. Polin.

Let V be a vector space and E is the (sub)space of linear
transformations of the space V . Consider an algebra V = V ⊕ E,
nonzero products of basis elements of of this algebra are given by the
rule: vieij = vj for vi ∈ V , eij ∈ E. It is easy to see that V ∈ P.

As we said earlier, the identities of the algebra V = V ⊕ E and L-space
E are very close related.
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Theorem 4.1 [L’vov, 1978].
The nonassociative polynomial zf(Rx1 , Rx2 , . . . , Rxn) is an identity of
the algebra V = V ⊕ E iff the associative polynomial f(x1, x2, . . . , xn)
is an identity of the L-space E.

Corollary 4.1.
Let G = {fi(xi1 , xi2 , . . . , xik)|i ∈ I} ⊆ F 〈X〉,
zG = {zfi(Rxi1 , Rxi2 , . . . , Rxik )|i ∈ I}.

The set zG is a basis of an identities for the algebra V = V ⊕ E iff the
set G is a basis of an identities for the L-space E.
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Using Corollary 4.1 and the results obtained earlier for multiplicative
vector spaces and their identities, we can obtain a number of
consequences for nonassociative algebras of the form V = V ⊕ E.

We formulate some corollaries of theorems proved for L-spaces.

We assume that modulo x(yz) = 0 the brackets in arbitrary word
x1x2 . . . xk are placed according to rule:
x1x2 . . . xk = ((. . . ((x1x2)x3) . . . )xk−1)xk and the writing
zf(x1, x2, . . . , xn) is a short form of the writing of
zf(Rx1 , Rx2 , . . . , Rxn).
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Theorem 4.2 [Isaev, K., 2013].
Let F be an infinite field of arbitrary characteristic. The nonassociative
algebra A = 〈v1, v2, v3, v4〉F ⊕ 〈e11, e12, e33, e43〉F is an NFB-algebra
with a basis of identities:

{x(yz), zSt3(x, y, t), zx[y, u]v, z[x, y][u, v],

z[x, y]z1z2 . . . zm[u, v]|m = 1, 2, . . . }.

Theorem 4.3 [Isaev, K., 2013].
Let F = GF (q) be an finite field. The nonassociative algebra
A = 〈v1, v2, v3, v4〉F ⊕ 〈e11, e12, e33, e43〉F is an NFB-algebra with a
basis of identities:

{x(yz), zSt3(x, y, t), zx[y, u]v, z[x, y][u, v], zx(y−yq)t, z(x−xq)(y−yq),
z[x, y](t− tq), z(x− xq)[y, t], z[x, y]z1z2 . . . zm[u, v]|m = 1, 2, . . . }.
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Theorem 4.4 [Isaev, K., 2015].
Let F be an infinite field of characteristic zero. The nonassociative
algebra A = 〈v1, v2, e11 + e12, e22〉F is an NFB-algebra with a basis of
identities:

{x(yz), zSt3(x, y, t), z[x, y][u, v], z[x, y]z1z2 . . . zm[u, v]|m = 1, 2, . . . }.

Theorem 4.5 [Isaev, K., 2015].
Let F = GF (q) be an finite field. The nonassociative algebra
A = 〈v1, v2, e11 + e12, e22〉F is an NFB-algebra with a basis of identities:

{x(yz), z(xq
2−q+1 − x), zSt3(x, y, t), z[x, y][u, v], z(x− xq)(y − yq),

z[x, y](t− tq), z(x− xq)[y, t], z[x, y]z1z2 . . . zk[u, v]|k = 1, 2, . . . }.
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{x(yz), z(xq
2−q+1 − x), zSt3(x, y, t), z[x, y][u, v], z(x− xq)(y − yq),

z[x, y](t− tq), z(x− xq)[y, t], z[x, y]z1z2 . . . zk[u, v]|k = 1, 2, . . . }.
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The nonassociative algebras constructed in Theorems 4.4 and 4.5 are
examples of four-dimensional NFB-algebras. Examples of
five-dimensional NFB-algebras were previously known [Maltsev,
Parfenov, 1977; L’vov, 1978].

If we put F = GF (2) in Theorem 4.5, then we obtain an example of an
NFB-ring containing 16 elements.

Also, having examples of INFB-spaces and SNFB-spaces, we can
construct examples of non-associative INFB-algebras and
SNFB-algebras, respectively.
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Theorem 4.6 [Isaev, K., 2013].
Let F be an arbitrary field. The algebra A = V ⊕ T2(F ) is an
SNFB-algebra.

Theorem 4.7 [Isaev, K., 2015].
Let F be an field of characteristic zero, E0 = 〈e11 + e12, e22〉F . The
algebra A = V ⊕ E0 over the field F is an SNFB-algebra.

Corollary 4.2.
Any finite dimensional F -algebra (over the corresponding field F )
containing the algebra A as a subalgebra has no finite basis of identities.
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Above, we gave an example of an L-variety that does not have a finite
basis of identities and is an union of two Specht varieties.

A similar construction can be constructed for algebras from the variety
P = 〈x(yz) = 0〉.

Let F be a field of characteristic zero, B1 = 〈v1, v2, e11, e12〉F ,
B2 = 〈v1, v2 + e11, e21〉F be F -algebras from the variety P.
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Theorem 4.8 [Isaev, 2018].
Let F be an field of characteristic zero. Varieties M1 = VarB1 and
M2 = VarB2 are Specht.

Theorem 4.9 [Isaev, 2018].
Let F be an field of characteristic zero. The variety
M = M1 ∪M2 = VarB1 ⊕B2 is an NFB-variety with a basis of
identities

{x(yz), zSt3(x, y, t), zx[y, u]v, x[y, u]v − v[y, u]x,

z[x, y]z1z2 . . . zm[u, v]|m = 1, 2, . . . }.
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In 1993, I.P. Shestakov formulated in Dniester notebook a question: do
there exist finite dimensional central simple algebras over a field of
characteristic zero that do not have a finite basis of identities?

Note that any finite dimensional simple algebra over an algebraically
closed field is uniquely determined by their identities up to
isomorphism [Shestakov, Zaycev, 2011].

Using the found SNFB-algebras and INFB-algebras, the required
example is constructed for an arbitrary field.
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Theorem 4.10 [Isaev, K., 2012].
Let A = 〈1, v1, v2, e11, e12, e22, p〉F be an algebra over arbitrary field F ,
where 1 is a unity element of A, and nonzero products of basis elements
which is not equal to unity element are defined by rules: vieij = vj ,
v2p = 1. Then the algebra A is a central simple F -algebra and A has no
finite basis of identities.
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After giving this example, the question was posed about the existence
of a finite dimensional simple commutative or anticommutative
NFB-algebra.

In the case of characteristic zero, an positive answer to this question
was obtained.
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Theorem 4.11 [K., 2015].
Let A = 〈1, v1, v2, e11, e12, e22, p〉F be an algebra over field F of
characteristic zero, where 1 is a unity element of A, and nonzero
products of basis elements which is not equal to unity element are
defined by rules: vieij = eijvi = vj , v2p = pv2 = 1. Then the algebra A
is a central simple commutative F -algebra and A has no finite basis of
identities.

Theorem 4.12 [K., 2017].
Let A = 〈e, v1, v2, e11, e12, e22, p〉F be an algebra over field F of
characteristic zero, where nonzero products of basis elements are
defined by rules: vieij = −eijvi = vj , v2p = −pv2 = e, vie = −evi = vi,
eije = −eeij = eij , pe = −ep = p. Then the algebra A is a simple
anticommutative F -algebra and A has no finite basis of identities.
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Theorems 4.10–4.12 give examples of nonfinitely based simple algebras
of dimension seven.

In the case of a field of characteristic zero, the dimension of the algebra
from Theorem 4.10 can be decrease to six.
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Theorem 4.13 [K., In proceeding].
Let A = 〈1, v1, v2, e11 + e12, e22, p〉F be an algebra over the field F of
characteristic zero, where 1 is a unity element of A, and nonzero
products of basis elements which is not equal to unity element (taking
into account the law of distributive) are defined by rules: vieij = vj ,
v2p = 1. Then the algebra A is a central simple F -algebra and A has no
finite basis of identities.

Kislitsin A.V. (AltSPU, OmSU) Identities of Spaces of Linear . . . 28.09.2023 54 / 57



Unsolved problems
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Description of NFB-spaces (SNFB-spaces, INFB-spaces).
Description of minimal nonzero L-varieties of vector spaces.
Study the structure of the lattice of L-subvarieties.
Description of almost commutative (almost nilpotent, almost
Engel, etc) L-varieties of vector spaces.
When is T (G) = L(G) for the set G of associative polynomials?
Construct an example of a not finitely based L-variety, any proper
L-subvariety of which is given by a finite number of identities.
Is there a three dimensional nonassociative NFB-algebra?
etc.
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Thank you for your attention!
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