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Quest for ”non-commutative modules”

From abelian groups and vector spaces - to modules over rings.

Nowadays, the theory of modules is an important part of
mathematics.

One of the most crucial techniques is the tensor completions.

The main question: How to extend this theory to
non-commutative groups?
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Quest for ”non-commutative modules”

Every group G has a natural Z-exponentiation (g ∈ G , n ∈ Z):

g → gn.

All attempts to define ”module” action of a ring R on G are trying
to mimic the natural Z-exponentiation on G in such a way that
R-action is compatible with the algebraic structure of G .
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Definitions of R-groups

Definition
Let R be an associative unitary ring. A group G is called an
R-group or a group with R-exponentiation if it comes equipped
with an R-action g → gα, where g ∈ G , α ∈ R, which satisfies the
following axioms:

1. g1 = g , g0 = e, eα = e.

2. gα+β = gαgβ, gαβ = (gα)β.

3. (h−1gh)α = h−1gαh.

4. (MR-axiom) ∀ g , h, α ∈ R gh = hg −→ (gh)α = gαhα.

If the action of R on G is faithful, i.e., for any α ∈ R Gα ̸= 1, then
R is called a ring of scalars of G .
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Examples of groups with exponentiation

Examples of groups with exponentiation:

• every group G is a Z-group,
• every group of a period n is an Z/nZ-group;
• R-modules over a ring R are abelian R-groups,

• divisible groups are Q-groups,

• unipotent groups G over a field k are k-groups,

• pro-p-groups are Zp-groups, where ZP is the ring of p-adic
integers,

• profinite groups are Ẑ-groups, where Ẑ is the completion of Z
in the profinite topology.
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Centroids of groups

A mapping ϕ : G → G is called:

• normal if
(h−1gh)ϕ = h−1gϕh, g , h ∈ G .

• a quasi-endomorphism if for any x , y ∈ G we have:

[x , y ] = 1 implies (xy)ϕ = xϕyϕ.

Theorem [M.]

The set Γ(G ) of all normal quasi-endomorphisms of G is an
associative ring with 1. It is called the centroid of G .

The centroid Γ(G ) is the generalization of the ring of
endomorphisms End(A) of an abelian group A to the
non-commutative case.
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Centroids as the maximal rings of scalars

The centroid Γ(G ) plays an important part in exponentiation in G .

Theorem [M.]

Let G be a group. Then:

• The centroid Γ(G ) is a ring of scalars for G ;

• Γ(G ) is the largest ring of scalars G , i.e., any other ring of
scalars of G embeds into Γ(G ).

Centroids of some groups are known:

• free groups, torsion-free hyperbolic groups, free products, and
CSA groups;

• as well as in some nilpotent groups: free nilpotent groups,
UTn(Z).
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Some open problems on centroids in metabelian groups

There is a good approach to compute centroids of finitely
generated nilpotent groups via centroids of their associated Lie
rings.

It is much less known about centroids of metabelian groups.

Open problems:

1) Describe the centroid of a free metabelian group.

2) What is the centroid of a metabelian Baumslag-Solitare group
BS(1, n)?

3) What is the centroid of the wreath product ZwrZ?
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Tensor completions

Definition
Let G be a group and R an associative unitary ring. An R-group
G ⊗ R is called a tensor R-completion if there is a homomorphism
λ : G → G ⊗ R such that:

• λ(G ) R-generates G ⊗ R,

• for any R-group H and any homomomorphism ϕ : G → H
there exists an R-homomorphism ψ : G ⊗ R → H such that
ϕ = ψ ◦ λ, i.e., the following diagram is commutative

G
λ //

ϕ ��

G ⊗ R

∃ψ{{
H

Sometimes the group G ⊗ R is denoted by GR .
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Existensce and uniqueness

The following results are standard.

• For every group G and every ring R there exists an
R-completion GR .

• The completion GR is unique up to an R-isomorphism.

• Let F be a free group. Then FR is a free R-group in the
category of R groups.

• The canonical homomorphism F → FR is injective, so this
R-completion is faithful.
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R-completions: algebraic structure

Now I will describe algebraic structure of GR for a very wide class
of groups G . For this I need a few defintions.

Definition
A subgroup H of a group G is called conjugately separated or
malnormal if H ∩ Hx = 1 for any x ∈ G ∖ H.

Definition
A group G is called a CSA-group if all its maximal abelian
subgroups are conjugately separated.

Free, torsion-free hyperbolic, and many other groups are CSA. This
is a truly large class.
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Tensor extensions of centralizers

From now on for simplicity I will consider only torsion-free groups
G and rings R of characteristic zero.

Tensor extensions of abelian subgroups

Let G be a group and M a maximal abelian subgroup of G . Then
amalgamated free product

G (M,R) = ⟨G ∗ (M ⊗ R) | M = i(M)⟩,

where i : M → M ⊗ R is the canonical embedding, is called the
tensor extension of M in G by R.
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Algebraic structure of tensor R-completions of CSA groups

Theorem [M.-Remeslennikov, 1996]

Let G be a torsion-free CSA group and R a ring of characteristic
zero. Then:

• GR is a union of a chain of tensor extensions of centralizers;

• the canonical homomorphism G → GR is inective;

• the group GR is torsion-free and CSA.

Since GR is obtained as a chain of amalgamated free products (of
a very particular type) Bass-Serre theory gives a powerful approach
to various algebraic, geometric, or algorithmic questions about GR .
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Fraisse limits

Theorem [Kharlampovich, M., Sklinos, 2020]

Let G be a torsion-free hyperbolic group then the Lyndon’s
completion GZ[t] is a Friasse limit of iterated extension of
centralizers of G . In particular, FZ[t] is a Friasse limit of iterated
extension of centralizers of F .

This result implies various universal and homogeneous properties of
FZ[t].
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Fraisse limits of tensor extensions of centralizers

Theorem [Amaglobeli-M.-Remeslennikov]

Let G be a torsion-free CSA group and R an associative unitary
ring of characteristic zero. Then:

• the class C of iterated tensor R-extension of centralizers of G
forms a Fraisse category;

• the R-completion GR of G is the Fraisse limit of C.
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How natural are tensor completions?

In the rest of my talk I will discuss:

• How tensor completions appear naturally in groups,

• Their algebraic and algorithmic properties,

• Compare them with other completions.
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Divisible groups

A group G is called divisible (or a Q-group) if every equation of
the type

xn = g

has a unique solution in G for every g ∈ G and n ∈ Z.

By now the theory of divisible groups is more than 100 years old.

For every group G the tensor Q-completion GQ gives the classical
canonical divisible hull of G which is uniquely defined by G (up to
Q-isomorphisms).
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Free Q-groups

Let F = F (X ) be a free group with basis X .

Then FQ is a free-Q group with basis X , i.e., the free object in the
category of divisible groups.

In 1968 G. Baumslag described the structure of FQ as a union of
chain of free root extensions.

A free root extension of an element g ∈ G is a free product with
amalgamation:

G ∗g=xn ⟨x⟩ = ⟨G , x | g = xn⟩.

Nowadays, the group FQ sometimes is called the Baumslag’s free
Q-group.
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Free Q-groups

The group FQ enjoys nice algorithmic properties.

Theorem [Kharlampovich-M.]

The Diophantine problem is decidable in FQ.

Decidability of the Diophantine problem means that there is an
algorithm that for any finite system of group equations with
coefficients in FQ decides whether or not it has a solution in FQ,
and if so, it finds a solution.

20 / 83



Magnus representation

An integral domain R is a binomial domain if for every a ∈ R and
n ∈ N the binomial coefficient

(a
n

)
is in R.

Let X = {x1, . . . , xn} and R⟨⟨x1, ..., xn⟩⟩ be the formal power series
ring with coefficients in R.

If ∆R is an ideal generated by X in R⟨⟨X ⟩⟩ then 1 +∆R is a group
of units in R⟨⟨X ⟩⟩.

One can define an R-action on 1 + ∆R by

(1 + f )α = 1 + Σ∞
n=1

(
α

n

)
f n,

which turns 1 + ∆R into an R-group.
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Magnus representation

The map xi −→ (1 + xi ) can be uniquely extended to an
R-homomorphism

λR : FR −→ 1 + ∆R ,

called the Magnus representation of FR , which is injective on F .

Long-standing problem: Is λQ injective?

Theorem [Jaikin-Zapirain, 2021]

The Magnus representation λR : FR −→ 1 + ∆R is injective for
any binomial domain R.

Corollary. The group FR is residually torsion-free nilpotent.
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Magnus representation for CSA groups

One can construct a similar representation

µG ,R : GR → 1 + ∆̄R ,

for a torsion-free CSA group G . Here the algebra R⟨⟨X ⟩⟩ is
replaced with the ∆-adic completion R[G ]∗ of the group algebra
R[G ] with respect to the augmentation ideal ∆ in R[G ], and ∆̄R is
an augmentation ideal in R[G ]∗.

Problem
Compute the kernel of µG ,R for binomial domains R and
torsion-free CSA groups G . In particular, is µG ,R injective for a
limit group G?
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Q-completions of limit groups

Theorem [Jaikin-Zapirain, 2021]

The Magnus representation µG ,Q : GQ → 1 + ∆̄Q is injective for
any limit group G .

Corollary. The Q-completion GQ of a limit group G is residually
torsion-free nilpotent.

Open problem

Is the Diophantine problem decidable in GQ for a limit group G?
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Pro-p-completions

For a group G denote by Ĝp the pro-p-completion of G , i.e., the
inverse limit of all finite p-quotients of G .

As we mentioned above Ĝp is a Zp-group.

If F (X ) is a free group with basis X then F̂ (X )p is a free pro-p
group with basis X .

Theorem [Jaikin-Zapirain, 2021]

Let X be a finite set then the canonical Zp-homomorphism

F (X )Zp → F̂ (X )p

is injective. In particular, F (X )Zp is residually torsion-free
nilpotent.
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Open problems for tensor Zp-completions

Open problem

Is the canonical Zp-homomorphism GZp → Ĝp injective for a limit
group G?

Open problem

Is the Diophantine problem decidable in GZp (with coefficients
from G ) for a limit group G?

Old open problem

Is the Diophantine problem decidable in Ĝp (with coefficients from
G ) for a limit group G? In particular, is it decidable in the
pro-p-completion F̂p for a free group F?
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group G?

Open problem

Is the Diophantine problem decidable in GZp (with coefficients
from G ) for a limit group G?

Old open problem

Is the Diophantine problem decidable in Ĝp (with coefficients from
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Remeslennikov’s problem

The following problem attracted a lot of attention during the last
couple of decades. It it is open still.

Qpen Problem [Remeslennikov]

Let F be a free non-abelian group of finite rank and G a finitely
generated residually finite group. Is it true that

F̂ ≃ Ĝ ⇐⇒ F ≃ G?

In view of the previous results it would be interesting to look at
seemingly easier but related problem problems.

27 / 83



Rigidity problems for exponentiation

First rigidity problem: Let R and S be two commutative unitary
rings of characteristic 0 and F a free group. Is it true that

FR ≃ F S =⇒ R ≃ S?

One can start with the case when R and S are fields.

Second rigidity problem: Let F be a free group and G a
torsion-freeCSA group (say torsion-free hyperbolic) and R an
integral domain. Is it true that

FR ≃ GR =⇒ F ≃ G?
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Lyndon’sgroup FZ[t]

In 1960 Lyndon introduced a free Z[t]-group FZ[t] to study
equations and algebraic geometry in free groups F .

He treated elements of FZ[t] as parametric words, where together
with the standard multiplication one is allowed to take
exponentiation by polynomials from Z[t], such as

(x f (t)yg(t))h(t)us(t),

modulo the congruence generated by the consequences of the
axioms.
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Algebraic sets in F

His idea was to describe the solution sets A of finite system of
equations S(x1, . . . , xn,F ) = 1 in F as finite unions of parametric
sets

A = P1 ∪ . . . ∪ Pn,

where Pi is the set of all values of some parametric word
wi ∈ FZ[t] under all specialization homomorphisms ϕn : FZ[t] → F
induced by the homomorphism Z[t] → Z that maps t → n, n ∈ Z.

In particular, the parametric set defined by a parametric word ut ,
where u ∈ F is the cyclic subgroup generated by u.

It follows that equation xu = ux in F , where u ∈ F is not a proper
power is described precisely by trhe parametric word ut .
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Algebraic sets in F

Lyndon showed that the solution sets of one-variable equations are
indeed finite unions of parametric sets.

In general his idea does not hold, but his intuition was not far off
as the following result shows.

Theorem [Kharlampovich-M.]

Every algebraic set (the solution set of a finite system of
equations) over F can be obtained as the Zariski closure of a finite
union of parametric sets.

We obtained a much more precise description of algebraic sets, but
there is no time to explain it here.
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Discriminating homomorphisms

Lyndon’s proofs were technically quite challenging because he did
not have a clear algebraic description of the structure of the group
FZ[t].

Nevertheless, he proved that the set of specialization
homomorphisms

Φ = {ϕn : FZ[t] → F | n ∈ Z}

discriminates FZ[t] into F , i.e., for any finite set of elements
E ⊂ FZ[t] there is ϕn ∈ Φ such that the restriction of ϕn on E is
injective.
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Elements of algebraic geometry and coordinate groups

Like in the classical algebraic geometry to understand solution sets
of finite systems of equations in a group one has to study the
coordinate groups of such systems.

Zariski topology (generated by the algebraic sets as prebasis of
closed sets) over free groups is Noetherian, hence every algebraic
set is a finite union of irreducible ones.

This implies that it suffices to study only the coordinate groups of
the irreducible algebraic sets.
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Uniformization theorems

The following result is rather general, but I state it just for free
groups.

Theorem [Baumslag-M.-Remeslennikov]

Let G be a finitely generated group. Then the following conditins
are equivalent:

• G is the coordinate group of an irreducible algebraic set over
F ;

• G is universally equivalent to F ;

• G is discriminated by F .

Combining this with Lyndon’s result on discrimination of FZ[t] one
immediately gets a large source of the coordinate groups of
irreducible algebraic sets over F - all finitely generated subgroups
of FZ[t].
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Subgroups of FZ[t]

By that time Bass-Serre theory was already developed. By design,
it allows one to describe subgroups of free constructions as
fundamental groups of graphs of groups.

In particular, it gives description of finitely generated subgroups of
FZ[t] as the fundamental groups of particularly nice graphs of
groups.

How about other groups discriminated by F , which are not
subgroups of FZ[t]?
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Coordinate groups: the last step

Theorem [Kharlampovich and M.]

Every finitely generated group discriminated by F embeds into
FZ[t].

This is technically a very demanding result that requires some
essential development of Makanin-Razborov technique on solving
equations in free groups, in particular, a novel description of
solution sets of systems of equations in free groups via triangular
quasi-quadratic systems.
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The Diophantine problem

The group FZ[t] is very well studied. I just mention two results.
The main approach to problems on finitely generated subgroups of
FZ[t] is via Bass-Serre theory which gives a description of finitely
generated subgroups as the fundamental groups of particularly nice
graphs of groups.

Theorem [Kharlampovich-M.]

The Diophantine problem is decidable in FZ[t].
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Tarski problems in free groups

Tarski problems for free groups F were solved by Kharlampovich
and Miasnikov, and, independently, by Sela:

• Th(F ) is decidable

• All nonabelian free groups have the same first-order theory
(Th(Fn) = Th(Fm) for all m, n ≥ 2)

• Th(F ) has effective quantifier elimination to ∀∃-formulas.
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First-order classification problem

First-order classification problem for F

Describe all groups which are first-order equivalent to a free group
F .

A group G is called elementarily free if G ≡ F , where F is a free
non-abelian group.

The main focus is on countable elementarily free groups, it is old
and difficult problem.
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First-order classification for free groups

Theorem [Kharlampovich-M., Sela, 2006]

Let F be a nonabelain free group. Regular NTQ groups
(ω-residually free towers, hyperbolic towers) are exactly the finitely
generated elementarily free groups.
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Countable elementary free groups

Theorem [Kharlampovich-Natoli]

Let G be a countable elementary free group in which all abelian
subgroups are cyclic. Then G is a union of a chain of finitely
generated elementary free groups.

However, Z ∗ (Z+Q) ≡ Z ∗ Z which shows that not every
countable elementary free group is a union of a chain of regular
NTQ groups.

Recently a new method was developed to construct ”non-standard
version” of groups.

They provide a completely new type of elementarily free groups.
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Non-standard models of F

Recall that a non-standard model of arithmetic is any ring Z̃ such
that Z ≡ Z̃.

Theorem
For every non-standard countable model of arithmetic Z̃ there
exists a unique non-standard free group F (Z̃) such that:

• F is the ”standard part” of F (Z̃);
• F is an elementary subgroup of F (Z̃);
• not only F ≡ F (Z̃), but F and F (Z̃) are equivalent in a much
stronger logic, a variation of the weak second order logic.
They are strong models of the first-order theory of F .
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Non-standard models of F

Properties of non-standard fee groups:

• The groups F (Z̃) are Z̃-groups.
• If X is a basis of F then X is a ”non-standard” basis of F (Z̃).
• The identical map X → X extends to a Z̃-homomorphism

νZ̃ : F Z̃ → F (Z̃).

Conjecture:

The map νZ̃ : F Z̃ → F (Z̃) is injective.

If this is true then we know quite a bit about the algebraic
structure of the non-standard free groups F (Z̃).
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Free R-groups and their R-subgroups

The Main Theme: study R-subgroups of a free R-group FR .

Open-ended problem 1: Develop a theory of free actions on ”free”
R-trees.

Note that for an ordered abelian group Λ one can define Λ-trees
and Λ-hyperbolic spaces.

However, these may not be ”universal” objects in the
corresponding categories.
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Free R-actions on free R-trees

One possible way to look for universal objects:

• Take an abelian ordered group Λ and form its tensor algebra
T (Λ),

• Take a Λ-tree Γ and consider its tensor T (Λ)-completion
Γ⊗Λ T (Λ).

In particular,

• Let Z be an infinite cyclic group.

• Then T (Z) ≃ Z[t] is the ring of integer polynomials in one
variable.

• Take a Z-tree (simplicial tree) Γ and form Γ⊗Z Z[t].
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Free Z-actions on free Z-trees

Question:
Are limits groups precisely the finitely generated groups that act
freely on Γ⊗Z Z[t] fro some Z-tree (simplicial tree) Γ?
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R-free constructions of R-groups and their R-subgroups

In the category of R-groups one can define free R-products with
amalgamation and HNN R-extensions.

Open-ended problem 2: Study these free R-constructions.

Open-ended problem 3: Develop an analog of Bass-Serre theory for
R-groups.
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Exponentiation in varieties of groups

For g , h ∈ G and α ∈ R, the element

(g , h)α = h−αg−α(gh)α

is called the α-commutator of the elements g and h. Clearly,

(gh)α = gαhα(g , h)α.

A normal R-subgroup H of an R-group G is an R-ideal if for any
g , h ∈ G fand α ∈ R

[g , h] ∈ H =⇒ (g , h)α ∈ H.

• Kernels of R-homomorphisms are R-ideals;

• If H is an R-ideal of G , then G/H is an R-group.
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Varieties of R-groups

Let W be a set of R-words in the group language extended by
exponentiation operations fα, α ∈ R.

A word w(x1, . . . , xn) ∈ W is an R-identity in an R-group G if
w(g1, . . . , gn) = 1 for all g1, . . . , gn ∈ G .

The set W determines a variety of R-groups VR(W ) consisting of
all R-groups satisfying the identities from W .
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Varieties of nilpotent and solvable R-groups

The left-norm commutator [x1, . . . , xc+1] of weight c defines the
variety of all R-groups which are nilpotent of class ≤ c.

Here
[x1, . . . , xc+1] = [[x1, . . . , xc ], xc+1].

Put δ0 = x and

δn+1(x1, . . . , x2n+1) = [δn(x1, . . . , x2n), δn(x2n+1, . . . , x2n+1)].

Then δc(x̄) defines the variety of all R-groups which are solvable of
class ≤ c .
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Free R-groups in the variety

From universal algebra we know that for any set X the variety
VR(W ) has free R-groups with basis X denoted FW ,R(X ).

Definition
The R-ideal W (G ) in G generated by the values of all words in a
set W is called the W -verbal ideal in G .

Free R-groups in varieties:
A free group in the variety V(W ) of R-groups defined by a set of
R-words W is R-isomorphic to

FW ,R(X ) = FR(X )/W (FR(X )),

where FR(X ) is an absolutely free R-group with basis X .
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Tensor completions in varieties

Let S be a subring of R, W a set of R-words.

For a group G ∈ VS(W ) one can define its tensor R-completion
GR
W ∈ VR(W ) by the corresponding universal property.

From universal algebra GR
W exists and it is unique.

Furthermore, for G ∈ VS(W )

GR
W ≃ GR/W (GR).

Main question: What is the algebraic structure of GR
W ?
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Tensor completions in the classical varieties

Let W = W (X ) be a set of the usual group words (i.e., Z-words)
and R a unitary ring of characteristic zero, so Z ≤ R.

Then VZ(W ) is the classical variety V(W ) of groups defined by W .

For G ∈ V(W ) the group GR
W is the tensor R completion of G

relative to W .

Main questions:

• how natural is this tensor completion GR
W for varieties W of

nilpotent and solvable groups?

• what is the algebraic structure of GR
W ?
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Faithfulness of tensor completions of nilpotent groups

Let G be a torsion-freenilpotent group and R an integral domain,
so Z ≤ R.

Then the following hold:

• The canonical homomorphism G → GR is injective.

• Tensor R-completions of residually torsion-free nilpotent
group are faithful.

• Tensor R-completions of free solvable groups are faithful.
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Mal’cev and Hall’s exponentiation in nilpotent groups

Definition
Let G be a torsion-freenilpotent group and R a binomial domain.
A group G is called a Hall’s R-group or a group with Hall’s
R-exponentiation if it comes equipped with an R-action g → gα,
where g ∈ G , α ∈ R, which satisfies the following axioms:

1. g1 = g , g0 = e, eα = e.

2. gα+β = gαgβ, gαβ = (gα)β.

3. (h−1gh)α = h−1gαh.

4. gα1 . . . g
α
n = (g1 . . . gn)

αt
(α2)
2 . . . t

(αc)
c ,

where c is the nilpotency class of G , and tk = tk(g1, . . . , gn)
are Petresco words.
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Mal’cev and Hall’s completions of nilpotent groups

Every torsion-free finiteley generated nilpotent group G has a
Mal’cev basis, i.e., a tuple of elements u1, . . . , un ∈ G such that
every g ∈ G has a unique representation in the form

g = ut11 . . . u
tn
n , ti ∈ Z

Exponents ti are called Malcev’s coordinates of g denoted
t(g) = (t1, . . . , tn).

In terms of coordinates t(g) multiplication in G is given by some
polynomials fi (x̄ , ȳ), i = 1, . . . , n with rational coefficients in such
a way that for g , h ∈ G

ti (gh) = fi (t(g), t(h)).

The standard Z-exponentiation in G is also defined by some
polynomials.
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Mal’cev and Hall’s completions of nilpotent groups

The Hall’s completion G ⊗H R of G by a binomial domain R:

• as a set consists of all tuples Rn (n is the length of a
Mal’cev’s base),

• multiplication on Rn is defined via the polynomials fi (x̄ , ȳ).

• R-exponentiation on Rn is defined by the same polynomials as
in G .

G ⊗H R is a nilpotent R-group and G naturally embeds into it.
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MR and Hall’s completions of nilpotent groups

Let Nc be a variety of nilpotent groups of class c defined by the
left-normed commutator [x1, . . . , xc+1].

Now for a torsion-free nilpotent group G ∈ Nc and a binomial
domain R we have two R-completions:

• R-completion of G in the variety Nc , which I now denote by
G ⊗ R.

• Hall’s R-completion G ⊗H R.

Both are R-groups, but the Hall’s axiom 4) is more restrictive.

How do they relate to each other?
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MR and Hall’s completions of nilpotent groups

The group G embeds in both G ⊗ R and G ⊗H R and R-generates
both of them.

Therefore the identical map G → G extends to an R-epimorphism

λG ,R : G ⊗ R → G ⊗H R.

Problem
Describe the kernel of λG ,R : G ⊗ R → G ⊗H R.
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MR and Hall’s completions of UT3(Z)

Let H = UT3(Z) be the Heizenberg group, which is also a free
2-nilpotent group of rank 2.

Theorem [Amaglobeli - Remeslennikov]

Let R = Q[t] or R = Q(t). Then

H ⊗ R ≃ H ⊗H R × D,

where D is a free R-module of countable rank and the direct
product is of abstract groups (not R-groups).

Note, that to prove this result the authors constructed precisely
the group H ⊗ R.
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MR and Hall’s completions of nilpotent groups of class 2

Theorem [ Amaglobeli - M. - Remeslennikov]

Let N be a free nilpotent of class 2 group and K a field of
characteristic 0. Then

N ⊗ K ≃ N ⊗H K × D,

where D is a K -vector space of dimension |N ⊗H K | and the direct
product is of abstract groups.

Corollary

• N ⊗H K naturally embeds into N ⊗ K .

• N ⊗H K is a retract of N ⊗ K .

• Ker(λN,K ) = D is a central subgroup of N ⊗ K .
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MR and Hall’s completions of nilpotent groups

Conjecture: Prove that the theorem above holds for an arbitrary
torsion-free nilpotent of class 2 group G , i.e., for a field K

G ⊗ K ≃ N ⊗H K × D,

where D is a K -vector space of a suitable dimension.

Very open question: is the same true for an arbitrary torsion-free
nilpotent group G?
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Algebraic structure of solvable and nilpotent R-groups

In group theory one can define solvability either through identities
or via series of commutants.

Likewise, nilpotency can be defined either through identities or via
central series.

It is not clear whether these definitions are equivalent in the class
of R-groups.

To address the problem one needs to study α-commutators
identities.
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Commutators and α-commutators

The standard commutator [x , y ] = x−1y−1xy and xy = yx [x , y ].

For α ∈ R the α-commutator (x , y)α is defined by

(x , y)α = y−αx−α(xy)α

so (xy)α = xαyα(x , y)α.

Note that [x , y ] = (y−1, x−1)−1.

In group theory the whole commutator calculus was developed to
deal with commutator identities.

There is, it seems, some α-commutator calculus for R-groups. For
example,

[gα, f ] = [g , f ]α
(
g , [g , f ]

)
α
.
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R-commutant

Let G be an R-group. Then the R-subgroup

(G ,G )R = ⟨(g , h)α | g , h ∈ G , α ∈ R⟩R

R-generated in G by all α-commutators is called the R-commutant
of G .

Properties of (G ,G )R

• (G ,G )R is the verbal subgroup of G defined by the word
x−1y−1xy .

• (G ,G )R is the smallest R-ideal H in G such that G/H is
abelian.
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R-commutant series

For an R-group G put G = G (0,R) and

G (n+1,R) = (G (n,R),G (n,R))R .

This gives the R-commutant series:

G = G (0,R) ≥ G (1,R) ≥ G (2,R) ≥ · · · ≥ G (n,R) ≥ · · ·

Definition
An R-group G is called R-solvable if G (n,R) = 1 for some n.
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Two definitions of solvable R-groups

Now we have two different types of higher commutants:

• The nth R-commutant G (n,R),

• The R-ideal idR(G
(n)), where G (n) is the verbal subgroup in

G generated by the word δn(x̄).

Clearly, G (n,R) ≥ idR(G
(n)).

Open problem: Is it true that G (n,R) = idR(G
(n)) for any n?

Note, that (G ,G )R = idR([G ,G ]), hence it is true for n = 1.

If G (n,R) = idR(G
(n)) for any n then R-solvable groups are

precisely the solvable R-groups.
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Lower central series of verbal ideals

Let G be an R-group.

Put γ0(G ) = G and define

γn+1(G ) = idR([G , γn(G )]),

i.e., γn+1(G ) is the R-ideal generated by [G , γn(G )].

This gives a series of R-ideals

γ0(G ) = G ≥ γ1(G ) ≥ . . . γn(G ) ≥ . . .

Definition An R-group G is called R-nilpotent if there is n such
that γn+1(G ) = 1. The smallest such n is called the nilpotency
class of G .

Let Nc,R be the class of all R-nilpotent groups of class c .
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R-lower central series

Let G be an R-group.

Put γ̄0(G ) = G and define

γ̄n+1(G ) = (G , γ̄n(G ))R .

as the R-commutant of G and γ̄n(G ).

This gives a series of R-ideals

γ̄0(G ) = G ≥ γ̄1(G ) ≥ . . . γ̄n(G ) ≥ . . .

which we call lower R-central series of G .

Definition An R-group G is called lower R-nilpotent if there is n
such that γ̄n+1(G ) = 1. The smallest such n is called the
nilpotency class of G .
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Lower central series of verbal ideals

Let G be an R-group.

Put γ0(G ) = G and define

γn+1(G ) = idR([G , γn(G )]),

i.e., γn+1(G ) is the R-ideal generated by [G , γn(G )].

This gives a series of R-ideals

γ0(G ) = G ≥ γ1(G ) ≥ . . . γn(G ) ≥ . . .

Definition An R-group G is called R-nilpotent if there is n such
that γn+1(G ) = 1. The smallest such n is called the nilpotency
class of G .
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Two definitions of nilpotent R-groups

Now we have two different types of central series in G :

• γ0(G ) = G ≥ γ1(G ) ≥ . . . γn(G ) ≥ . . .,

• γ̄0(G ) = G ≥ γ̄1(G ) ≥ . . . γ̄n(G ) ≥ . . .

Clearly, γ̄n(G ) ≥ γn(G ) for each n.

Open problem: Is it true that γ̄n(G ) = γn(G ) for each n?

If γ̄n(G ) = γn(G ) for any n then R-nilpotent groups are precisely
the nilpotent R-groups.
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Two definitions of nilpotent R-groups

Theorem [Amaglobeli-Nadiradze-M.]

For any R-group G
γ̄2(G ) = γ2(G ).

Hence the two definitions of the 2-nilpotent R-groups are
equivalent.
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Exponentiation in metabelian groups

For nilpotent groups N there are two types of R-completions of N:

• free tensor R-completion N ⊗MR R,

• Hall R-completion N ⊗H R.

They are different but close which allows one to study N ⊗MR R
via N ⊗H R.

Is the situation similar in the class of solvable, say metabelian
groups?
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Free metabelian groups

Let G be a free metabelian group with basis X = {x1, . . . , xn}.

The group G acts by conjugation on G ′, which gives an action of
the abelianization Ḡ = G/G ′ on G ′.

This action extends by linearity to an action of the group ring ZḠ
on G ′ and turns G ′ into a ZḠ -module.

ZḠ can be viewed as the Laurent polynomial ring

A = Z[a1, a−1
1 , . . . , an, a

−1
n ],

where ai = xiG
′.

74 / 83



Normal Forms for G

Lemma [M.- Romankov]

Every element u ∈ G ′ can be uniquely presented as a product

u = Π1≤j<i≤n[xi , xj ]
βij (a1,...,ai ),

where βij(a1, . . . , ai ) ∈ Z[a1, a−1
1 , . . . , ai , a

−1
i ] ≤ ZḠ .

In particular, every element g ∈ G can be uniquely presented as a
product

g = xγ11 . . . xγnn Π1≤j<i≤n[xi , xj ]
βij (a1,...,ai ),

where γi ∈ Z and βij as above.
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Groups elementarily equivalent to G

Theorem [Kharlampovich-M.]

Let G be a free metabelian group with basis X . Then for an
arbitrary group H H ≡ G if and only if H is the non-standard
version G (Z̃) of G for some non-standard arithmetic Z̃.

This is based on

Theorem [Kharlampovich-M. - Sohrabi]

Let G be a free metabelian group of finite rank r ≥ 2. Then G is
regularly bi-interpretable with Z.
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Non-standard free metabelian groups

One can say a lot on the algebraic structure of G (Z̃). For us now
the following is of interest.

Corollary

• G is an elementary subgroup of G (Z̃).
• G (Z̃) is non-standardly generated by X .

• The group G (Z̃) is a metabelian Z̃-group.

Question: How far G (Z̃) is from G Z̃?
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Non-standard free metabelian groups

The group G Z̃ is a free metabelian Z̃-group with basis X .

Hence the identical map X → X extends to a Z̃-homomorphism

λZ̃ : G Z̃ → G (Z̃).

Theorem [Kharlampovich-M.]

The homomorphism λZ̃ : G Z̃ → G (Z̃) is injective.

Now we know much more on the structure of the Z̃-subgroup ⟨G ⟩Z̃
in G (Z̃) generated by G .
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More on the structure of G (Z̃)

Let Z̃ḠNS be a non-standard ring of Laurent polynomials.
(Miasnikov, Nikolaev)
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Structure of G (Z̃)

Theorem [Kharlampovich-M.]

Let H = G (Z̃) be a non-standard free metabelian group. Then:

• H/H ′ is a free Z̃-module.

• H ′ is a module over Z̃ḠNS with generators
{[xi , xj ] | 1 ≤ j < i ≤ n}.

• Elements h ∈ H can be uniquely represented as

h = x γ̃11 . . . x γ̃nn Π1≤j<i≤n[xi , xj ]
βij (a1,...,ai ),

where γ̃i ∈ Z̃, βij(a1, . . . , ai ) ∈ Z̃ḠNS .

• Multiplication of the normal forms is explicitly given by some
functions (more on this below).
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A-metabelian groups

Let A be a discretely ordered commutative ring (no element
between 0 and 1) and K a multiplicative A-module with generators
a1, . . . , an.

Let A(K ) be the group A-algebra over K .

Extend A(K ) to the ring of ”formal power series” Â(K ).

Let A⟨⟨K ⟩⟩ be an A-algebra generated in Â(K ) by A(K ) and all
the following series for all positive δ ∈ A and a, b ∈ K :

(aδ − 1)/(a− 1) = Σ0≤α<δa
α,

and

Σ0≤α<δb
α a

α − 1

a− 1
.
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Analogy with Hall’s-completions

In the Hall’s R-completions of nilpotent groups N one has to
extend the ring R to a binomial ring Rbin adding all the binomial
coefficients

(a
n

)
for a ∈ R and n ∈ N, so the functions that define

the multiplication of normal forms (Malcev’s coordinates) in
N ⊗H Rbin are well-defined.
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A-metabelian groups

Define an A-metabelian exponential group M by the following
axioms:

• M is metabelian A-exponential group.

• M ′ is A⟨⟨K ⟩⟩-module.

• For any z , x ∈ M and δ ∈ A,

[z , xδ] = [z , x ](a
δ−1)/(a−1).

• For any z , x ∈ M and δ ∈ A,

y−δx−δ(xy)δ = [x , y ]f (a,b),

where

f (a, b) = [(aδbδ − 1)/(ab − 1) + (1− bδ)/(b − 1)]/(1− a).
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