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Aims and scope

Our research is related to universal algebraic geometry (UAG). See the
papers, books and surveys by B.Plotkin, V. Remeslennikov, A.Miasnikov,
E.Daniyarova and other researchers.
We study equations over semigroups and partially solve Plotkin‘s problem
for wreath products of semigroups.



Languages, terms and atomic formulas. Examples

Let L = {·} be a semigroup language. The examples of L-terms are the
following: x1x2, x1x1, x1x2x3x3x2x1, . . .
An L-atomic formula (L-equation) is an equality of two L-terms. The
examples of L-equations x1x2 = x2x1, x1x1 = x1, x1x2x3 = x4x4x4, . . .



Systems of equations

An arbitrary set of L-equations (L-atomic formulas) is called a system.

NB: we consider system of equations which depend on at most finite
number of variables.

The solution set of a system of equations S over a semigroup A is
denoted by VA(S).

An set Y ⊆ An is algebraic over A if there exists a system of
L-equations with the solution set Y .



Noetherian property (the main type of compactness)

An L-algebra A is equationally Noetherian if any infinite L-system S is
equivalent over A to some finite subsystem S′ ⊆ S.

Equivalently, A is equationally Noetherian iff there is not any infinite
chain

Y1 ⊃ Y2 ⊃ . . . ⊃ Yn ⊃ . . .

of algebraic sets over A.



An L-algebra A is qω-compact if for any infinite L-system S and an
equation t(X) = s(X) such that

VA(S) ⊆ VA(t(X) = s(X))

there exists a finite subsystem S′ ⊆ S with

VA(S′) ⊆ VA(t(X) = s(X))

Any equationally Noetherian L-algebra is qω-compact.

Notice that B.Plotkin uses the different terminology:

qω-compact=“logically Noetherian property”;

“equationally Noetherian”=“geometrically Noetherian”.



Main question of UAG

Problem

When a given algebraic structure (semigroup) is equationally Noetherian
or qω-compact?

There are many examples of semigroups from such classes. For example,
the famous bicyclic semigroup B = 〈a, b | ab = 1〉 is not equationally
Noetherian (open problem: is B qω-compact?).



Constants

Let S be a fixed semigroup. One can define the language
L(S) = {·} ∪ {s | s ∈ S}. L(S)-terms: x1s1x2s2, s1x1x2s2....
Similarly, one can define equations, algebraic sets etc. for equations with
constants.



For any semigroup S we have two different notions:

1 S is equationally Noetherian in the language L (i.e. any system of
constant-free equations is equivalent to its finite subsystem);

2 S is equationally Noetherian in the language L(S) (i.e. any system
with constants is equivalent to its finite subsystem).

The similar dichotomy we have for qω-compactness:

1 S is qω-compact in the language L;

2 S is qω-compact in the language L(S).



Facts [see DMR]

1 (S is equationally Noetherian in the language L(S))⇒(S is
equationally Noetherian in the language L);

2 Let S be finitely generated. (S is equationally Noetherian in the
language L(S))⇐(S is equationally Noetherian in the language L);

3 (S is qω-compact in the language L(S))⇒(S is qω-compact in the
language L);



Why B = 〈a, b | ab = 1〉 is not equationally Noetherian in L? According
to the fact from the last slide, in is sufficient to prove that B is not
equationally Noetherian in L(S). Indeed,

xba = x,

xb2a2 = x,

. . .

xbnan = x,

. . .

For example, the element ba is the solution of the 1st equation:
baba = b1a = ba, but does not satisfy the second equation:
bab2a2 = b2a2 6= ba. More generally, the element bnan satisfies the first
n equations, but does not satisfy the (n+ 1)-th equation.
Thus, B is not equationally Noetherian in L(S).



Why B is not equationally Noetherian in L? We may replece constants
to variables (B is f.g.)

xba = x,

xb2a2 = x,

. . .

xbnan = x,

. . .

⇒



xyz = x,

xy2z2 = x,

. . .

xynzn = x,

. . .



Plotkin‘s problem for wreath products

Problem

When the wreath product of two groups A,B is

1 equationally Noetherian;

2 qω-compact, but not equationally Noetherian.

3 not qω-compact.

B. I. Plotkin “Problems in algebra inspired by universal algebraic
geometry”, J. Math. Sci., 139:4 (2006), 6780–6791
We study this problem for semigroups. The wreath products of
semigroups is an important object which plays a central role in
Krohn-Rhodes theory of finite semigroups.



Wreath products for semigroups

Let A,B be semigroups. The direct power AB =
∏
b∈B A of A with the

index set B is the set of all tuples

(ab | b ∈ B), ab ∈ A

indexed by elements of B. The semigroup AB admits the coordinate-wise
multiplication

(ab | b ∈ B) · (a′b | b ∈ B) = (aba
′
b | b ∈ B).



Let us give the definition of the wreath product A oB of two semigroups
A,B. Since in our studies the second semigroup B is always
commutative, we treat B below as a semigroup of the additive language
L+ = {+}.
The wreath product C = A oB of two semigroups A,B is a set of all
pairs

{(a, b) | a ∈ AB , b ∈ B}.

The multiplication in A oB is defined as follows. Let
a = (ab | b ∈ B) ∈ AB , a′ = (a′b | b ∈ B) ∈ AB , then

(a, b1)(a′, b2) = (a′′, b1 + b2), (1)

where a′′ = (a′′b | b ∈ B), a′′b = aba
′
b+b1

.



Examples of multiplication in wreath products

Let C = A oB; A has a zero, and B = {1, 2, 3, . . .} is the additive cyclic
semigroup.
We have

[(a1, 0, 0, . . .), 1][(0, a2, 0, 0, . . .), 1] = [(a1a2, 0, 0, . . .), 2].

In particular, the product

[(a1, 0, 0, . . .), n][(0, . . . , 0︸ ︷︷ ︸
m

, a2, 0, 0, . . .), 1]

equals [(0, 0, 0, . . .), n+ 1] if n 6= m.



Solving the equation xy = yx over C = A oB,
B = {1, 2, 3, . . .}

Any variable is actually a pair x = [(x1, x2, . . .), χ], y = [(y1, y2, . . .), ω].
Any equation over wreath product is splitted into two expressions:

(x1yχ+1, x2yχ+2, . . .) = (y1xω+1, y2xω+2, . . .)

χ+ ω = ω + χ.

The second equation is trivial. Thus, we obtain the infinite number is
equations over A: 

x1yχ+1 = y1xω+1,

x2yχ+2 = y2xω+2,

. . .

with variable indexes χ, ω



Shift operator

The multiplication in wreath products for the cyclic semigroup B has the
following sense. An element b ∈ B defines a shift map σb : AB →

∏
AB ,

σb((a0, a1, . . .)) = (ab, ab+1, . . .).

Then any product may be written as

(a1, b1)(a2, b2) = (a1 · σb1(a2), b1 + b2),

where · is the coordinate-wise product of two vectors.
E.g. an L-equation xy = yx over A oB is equivalent to the pair of
equations:

xσχ(y) = yσω(x), χ+ ω = ω + χ,

where the solutions of the first equation are considered over the direct
power AB .



We use this fact in our proofs

Let C = A oB; A has a zero, and B = {1, 2, 3, . . .} is the additive cyclic
semigroup. The elements

a1 = [(. . .), n1],a2 = [(. . .), n2], . . . ,ak = [(. . .), nk]

has zero entries for all indexes > (k − 1). Then
a1a2, . . . ,ak = [(0, 0, 0, . . .), n1 + n2 + . . .+ nk].

Proof

We have n1 + n2 + . . .+ nk > k in B, so all nonzero entries in ak are
annihilated by the shifts.



Wreath products in groups. Results

If A,B are groups, then C = A oB is a group, and we already have
several results for equations over wreath products in groups. Groups are
considered in the language Lgr = {·,−1 , 1}.

Result (G.Baumslag, A.Miasnikov, V.Roman‘kov)

If A is non-abelian and B is infinite then C = A oB is not equationally
Noetherian in Lgr(C). Reason: an infinite chain of centralizers in C.



Theorem A

Suppose a semigroup A contains zero and a semigroup B is infinite
cyclic. The wreath product C = A oB is equationally Noetherian iff A is
nilpotent (i.e. there exists a number n such that any product of n
elements equals 0 ∈ A).

The “if” part is obvious. If C is nilpotent any sufficiently long L-term
t(X) equals t(P ) = [(0, 0, 0, . . .), ∗] for every P ∈ Cn. Thus, equations
with long parts are degenerated into a true identities.



Idea of the proof

Let us show the proof of the “only if” part.
Consider an infinite system of constant-free equations

S =



x1x3 = x4x6,

x1x2x3 = x4x5x6,

x1x
2
2x3 = x4x

2
5x6,

x1x
3
2x3 = x4x

3
5x6,

. . .

and Sn be the first n equations of S.



Since A is not nilpotent, there exist elements a1, a2, . . . , an+1 ∈ A with
a1a2 . . . an+1 6= 0. Define a point P = (p1, . . . ,p6) ∈ Π6 as follows:

p1 = (a1, 0, 0, . . .),

p2 = (a1, a2, . . . , an),

p3 = ( 0, . . . , 0︸ ︷︷ ︸
n+ 1 times

, an+1, 0, 0, . . .),

p4 = p5 = p6 = (0, 0, . . .).

Denote P = (1, 1, 1, 1, 1, 1) ∈ B6, 0 = (0, 0, . . .).
One can directly prove that all equations of Sn are satisfied by the given
point.



Let us take the (n+ 1)-th equation of SA:

x1x
n+1
2 x3 = x4x

n+1
5 x6

For this equation the point (P, P ) gives

p1σ1(p2)σ2(p2) . . . σn(p2)σn+1(p3) = (a1, 0, 0, . . .)

(a2, a3, . . . , an, 0, 0, . . .)

(a3, a4, . . . , an, 0, 0, . . .)

. . .

(an, 0, 0, . . .)

(an+1, 0, 0, . . .)

= (a1a2a3 . . . an+1, 0, 0, . . .) 6= 0.

Thus, the system S is not equivalent to its finite subsystems.



Theorem B.

The wreath product C = A oB of two semigroups A,B is qω-compact if
A contains a zero and B is infinite cyclic.

Interesting property: a semigroup A may be not qω-compact, but the
whole wreath product C = A oB is qω-compact.


