Tame and wild automorphisms of free algebras

Ualbai Umirbaev

Dedicated to the 85th anniversary of V.N. Remeslennikov

Combinatorial and computational methods of algebra and logic September 26–30, 2023, Omsk, Russia

Let F_n be a free group of rank n with a set of free generators $X = \{x_1, \ldots, x_n\}.$

Elementary Nielsen automorphisms:

(1) n_i sends x_i to x_i^{-1} and leaves the other elements of X unchanged; (2) n_{ij} sends x_i to $x_i x_j$ ($i \neq j$) and leaves the other elements of X unchanged.

Jakob Nielsen, 1924 (a) The automorphism group $\operatorname{Aut} F_n$ of F_n is generated by all elementary Nielsen automorphisms. (b) The automorphism group $\operatorname{Aut} F_n$ is a finitely presented group.

Nielsen, 1921 – Schreier, 1927 Subgroups of free groups are free.

Let K be a field and K[x, y] be the polynomial algebra over K in two variables x, y. Automorphisms of K[x, y] of the form

$$\begin{array}{rccc} x & \mapsto & \alpha x + g(y) \\ y & \mapsto & y \end{array}$$

and

$$\begin{array}{rccc} x & \mapsto & x \\ y & \mapsto & \beta y + f(x) \end{array}$$

are called elementary.

Jung, 1942, van der Kulk, 1953 Every automorphism of K[x, y] is a product of elementary automorphisms.

van der Kulk, 1953, Shafarevich, 1966

The group of automorphisms of K[x, y] admits the following amalgamated free product structure:

$$\operatorname{Aut}(K[x,y]) \cong \operatorname{Af}_2(K) *_H \operatorname{Tr}_2(K),$$

where

$$Af_{2}(\mathcal{K}) = \{ \begin{array}{ccc} x & \mapsto & \alpha_{1}x + \beta_{1}y + \gamma_{1} \\ y & \mapsto & \alpha_{2}x + \beta_{2}y + \gamma_{2} \end{array} \}$$

is the group of affine automorphisms,

$$\operatorname{Tr}_{2}(\mathcal{K}) = \{ \begin{array}{ccc} x & \mapsto & \alpha x + g(y) \\ y & \mapsto & \beta y + \gamma \end{array} \}$$

is the group of triangular automorphisms, and $H = Af_2(K) \cap Tr_2(K)$.

Let $A = K[x_1, x_2, ..., x_n]$ be a polynomial algebra. An automorphism ϕ of A such that

 $x_i \mapsto \alpha x_i + f,$ $x_j \mapsto x_j, j \neq i,$

where $0 \neq \alpha \in K$, $f \in K[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$, is called **elementary**.

An automorphism is called **tame** if it is a product of elementary automorphisms. A nontame automorphism is called **wild**.

The subgroup TA(A) of Aut(A) generated by all elementary automorphisms is called the subgroup of **tame** automorphisms.

Masayoshi Nagata, 1972 Automorphism σ of K[x, y, z]:

$$\begin{aligned} \sigma(x) &= x + 2(y^2 - xz)y + (y^2 - xz)^2 z, \\ \sigma(y) &= y + (y^2 - xz)z, \\ \sigma(z) &= z. \end{aligned}$$

Nagata Automorphism σ is a non-tame automorphism of K[z][x, y].

Martha Smith, 1989 The Nagata automorphism is stably tame.

Shestakov–U., 2001 The Nagata automorphism is wild (char(K) = 0).

Free associative algebras

Makar-Limanov, 1970, Czerniakiewicz, 1971-1972 Every automorphism of the free associative algebra $K\langle x, y \rangle$ is tame and

$$\operatorname{Aut}(K[x,y]) \cong \operatorname{Aut}(K\langle x,y\rangle) \cong \operatorname{Af}_2(K) *_H \operatorname{Tr}_2(K).$$

David Anick Let $K\langle x, y, z \rangle$ be a free associative algebra in three variables. Consider the automorphism δ defined by

$$\delta(x) = x + z(xz - zy),$$

$$\delta(y) = y + (xz - zy)z,$$

$$\delta(z) = z.$$

U., 2004 The Anick automorphism is wild (char(K) = 0).

An associative and commutative algebra $\langle P, \cdot \rangle$ over a field K endowed with a bracket $\{x, y\}$ (a Poisson bracket) is called **a Poisson algebra** if (1) P is a Lie algebra under $\{x, y\}$, (2) P satisfies the the Leibniz identity:

$$\{x, y \cdot z\} = \{x, y\} \cdot z + y \cdot \{x, z\}.$$

The **symplectic Poisson** algebra P_n of index $n \ge 1$ is the polynomial algebra in the variables $x_1, \ldots, x_n, y_1, \ldots, y_n$ endowed with the Poisson bracket defined by

$$\{y_i, x_j\} = \delta_{ij}, \ \{x_i, x_j\} = 0, \ \{y_i, y_j\} = 0,$$

where $1 \leq i, j \leq n$.

Poisson enveloping algebras

Let *L* be an arbitrary algebra with a skew-symmetric bilinear operation $[\cdot, \cdot]$ over a field *K* of characteristic 0 and let

$$e_1, e_2 \ldots, e_n, \ldots$$

be a linear basis of L.

Then there exists a unique bracket $\{\cdot,\cdot\}$ satisfying the Leibniz identity on the polynomial algebra

$$K[e_1, e_2 \ldots, e_n, \ldots]$$

such that

$$\{e_i,e_j\}=[e_i,e_j].$$

The algebra $\langle K[e_1, \ldots,], \cdot, \{\cdot, \cdot\} \rangle$ will be called the **Poisson enveloping** algebra of *L* and will be denoted by P(L).

If L is a free Lie algebra then P(L) is a free Poisson algebra.

ENVEN E VOR

Automorphisms of Poisson algebras

Makar-Limanov, Turusbekova, U., 2009 Every automorphism of a free Poisson algebra $P\langle x, y \rangle$ in two variables over a field of characteristic zero is tame and

 $\operatorname{Aut}(K[x,y]) \cong \operatorname{Aut}(K\langle x,y\rangle) \cong \operatorname{Aut}(P\langle x,y\rangle) \cong \operatorname{Af}_2(K) *_H \operatorname{Tr}_2(K).$

Makar-Limanov, U., 2011 Let $P(x, y) = Q(P\langle x, y \rangle)$ be the free Poisson field in two variables x, y over a field K of characteristic 0. Then

Aut
$$P(x, y) \cong$$
 Aut $K(x, y) = Cr_2(K)$.

The Nagata automorphism is a wild automorphism of free Poisson algebras in three variables.

I. Shestakov, 2005 An analogue of the Anick automorphism is also a wild automorphism of free Poisson algebras in three variables.

Nagata–Anick Consider the following automorphism of K[x, y, z, t] or $K\langle x, y, z, t \rangle$

$$\begin{array}{rccc} x & \longmapsto & x + t(xz - ty), \\ y & \longmapsto & y + (xz - ty)z, \\ z & \longmapsto & z, \\ t & \longmapsto & t. \end{array}$$

Martha Smith, 1989 The Nagata and the Anick automorphisms are stably tame.

Let

$$A = A_0 \oplus A_1 \oplus \ldots \oplus A_k \oplus \ldots$$

be the standard degree grading of the polynomial algebra $A = K[x_1, x_2, ..., x_n]$, i.e., A_k is the linear span of monomials of degree k.

Let $IA_i(A)$ be the subgroup of all automorphisms of A that induces the identity automorphism on the factor-algebra $A/(A_i + A_{i+1}...)$. We have

$$\operatorname{Aut}(A) = \operatorname{IA}_0(A) \supset \operatorname{IA}_1(A) \supset \ldots \supset \operatorname{IA}_k(A) \supset \ldots$$

An automorphism ϕ is called **approximately tame** if there exists a sequence of tame automorphisms $\{\psi_k\}_{k\geq 0}$ such that $\phi\psi^{-1} \in IA_k(A)$. (limit in the formal power series topology)

Shafarevich, 1981 – Anick, 1983 Every automorphism of $A = K[x_1, x_2, ..., x_n]$ is approximately tame.

Corollary The Nagata automorphism is approximately tame.

Problem 1 Is every automorphism of a free associative algebra approximately tame?

Problem 2 Is every automorphism of a free Poisson algebra approximately tame?

A variety of universal algebras is called **Nielsen-Schreier**, if any subalgebra of a free algebra of this variety is free, i.e., an analog of the classical Nielsen-Schreier Theorem holds.

A.G. Kurosh, 1947 The variety of all nonassociative algebras is Nielsen-Schreier.

A.I. Shirshov, 1954 The varieties of all commutative and anti-commutative algebras are Nielsen-Schreier.

A.I. Shirshov, 1953, E. Witt, 1956 The varieties of all Lie and *p*-Lie algebras are Nielsen-Schreier.

A.A. Mikhalev, 1985,1988, Stern, 1986 The varieties of all Lie superalgebras, color Lie superalgebras, *p*-Lie superalgebras are Nielsen-Schreier.

V. Dotsenko, U., 2022

(1) The variety of pre-Lie (also known as right-symmetric) algebras,(2) the variety of Lie-admissible algebras,

(3) the variety of nonassociative algebras satisfying the identity

$$xx^2 + \alpha x^2 x = 0,$$

for every given $\alpha \neq 1$,

(4) the variety of nonassociative algebras satisfying the identity

$$x(x(\cdots(xx^2)))=0.$$

P. Cohn, 1964 Every automorphism of a finitely generated free Lie algebra is tame.

J. Lewin, 1968 Every automorphism of a finitely generated free algebra of a Nielsen-Schreier variety of algebras is tame.

U., 2004 Let A be a a finitely generated free algebra of a Nielsen-Schreier variety of algebras. The defining relations of the group of automorphisms Aut(A) with respect to the set of all elementary automorphisms are described.

Free Lie algebras of rank 3

Alimbaev, Nauryzbaev, U., 2020 The group of automorphisms of a free Lie algebra $L_3 = \text{Lie}\langle x, y, z \rangle$ admits an amalgamated free product structure

$$\operatorname{Aut}(L_3) = \operatorname{GL}_3(K) *_H T_3,$$

where T_3 is the subgroup of all automorphisms of the form

$$\begin{array}{rccc} x & \mapsto & \alpha x + f \\ y & \mapsto & \beta_2 y + \beta_3 z \\ z & \mapsto & \gamma_2 y + \gamma_3 z \end{array}$$

where $\alpha, \beta_i, \gamma_i \in K$, $f \in \text{Lie}\langle y, z \rangle$, and $H = \text{GL}_3(K) \cap T_3$.

M.A. Shevelin, 2012 Every finite group of automorphisms of a free Lie algebra in three variables over a field of characteristic zero is linearizable.

Question Is there an analogue of this result for groups?

Let F_n be the free group of rank n. Then $M_n = F_n/F''_n$ is the free metabelian group of rank n.

Bachmuth, **1965** IAut $(M_2) = Inn(M_2)$. Hence every automorphism of M_2 is tame.

Chein, 1968 M_3 has wild automorphisms.

Bachmuth, **Mochizuki**, **1967** $Aut(M_3)$ is not even finitely generated.

Roman'kov, 1992 M₃ has wild primitive elements.

Bachmuth, Mochizuki, 1985–Roman'kov, 1985 Every automorphism of M_n for $n \ge 4$ is tame.

Automorphisms of free metabelian Lie algebras

Let L_n be the free Lie algebra of rank n. Then $M_n = L_n/L''_n$ is the free metabelian Lie algebra of rank n.

Chein or one-row automorphisms $\phi = (f, x_2, \ldots, x_n)$, i.e.,

 $x_1 \mapsto f,$ $x_i \mapsto x_i, i \ge 2.$

Example M_n , $n \ge 3$

 $x_1 \mapsto x_1 + [[x_2, x_3], x_1],$ $x_i \mapsto x_i, i \ge 2.$

Exponential or inner automorphisms Let $a \in M'_n$. Then $ad(a)^2 = 0$ and

$$\exp(ad(a)) = (x_1 + [a, x_1], x_2 + [a, x_2], \dots, x_n + [a, x_n])$$

is an automorphism

Ualbai Umirbaev (Wayne State University)

Artamonov, 1977 Every nontrivial inner automorphism of M_2 is wild. An automorphism is called **absolutely wild** if it is not approximately tame. **Bryant, Drensky, 1993** M_2 and M_3 have absolutely wild automorphisms. An automorphism of M_n is called **strictly wild** if it does not belong to the subgroup generated by all tame, one-row, and inner automorphisms. **Roman'kov, 2008** M_3 has strictly wild automorphisms. **Kabanov, Roman'kov, 2009** M_3 has strictly wild primitive elements. **Bryant, Drensky, 1993** Every automorphism of M_n for $n \ge 4$ is approximately tame.

 \mathfrak{N}_c is the variety of all nilpotent Lie algebras of class $\leq c$ \mathfrak{A} is the variety of abelian Lie algebras A variety of Lie algebras of the form $\mathfrak{N}_{c_1}\mathfrak{N}_{c_2}\ldots\mathfrak{N}_{c_k}$ is called polynilpotent.

Drensky, 1992, Papistas, 1993, Bahturin, Shpilrain, 1995 Let \mathfrak{M} be a polynilpotent variety of Lie algebras that is not \mathfrak{A}^2 . Then every free algebra of \mathfrak{M} of rank $n \ge 2$ has wild automorphisms.

V. Dotsenko, U., 2023 In fact, these wild automorphisms are absolutely wild.

3

Bahturin, Nabiev, 1992 Every nontrivial inner automorphism of M_n is wild.

Özkurt, Ekici, 2008 The automorphism ψ defined by

$$x_1 \mapsto x_1 + [[x_1, [x_2, x_3]], x_4], x_i \mapsto x_i, i \ge 2$$

is wild.

Both papers contain elementary mistakes.

Problem Is it true that every automorphism of the free metabelian Lie algebra M_n of rank $n \ge 4$ tame?