Permutation groups and the graph isomorphism problem

Andrey Vasil'ev

Sobolev Institute of Mathematics

Omsk 26-30.09.2023 Graph isomorphism problem

$$\begin{split} &\Gamma = (\Omega, E) \text{ is a graph} \\ &\Omega \text{ is the vertex set, } E \subseteq \Omega^2 \text{ is the edge (arc) set} \\ &\text{For graphs } \Gamma = (\Omega, E) \text{ and } \Gamma' = (\Omega', E'), \\ &\text{Iso}(\Gamma, \Gamma') = \{f : \Omega \to \Omega' \text{ a bijection } | E^f = E'\}. \end{split}$$

Graph ISO

Given two graphs Γ and Γ' , test whether $Iso(\Gamma, \Gamma') = \varnothing$.

 $\begin{array}{l} \mbox{Graph isomorphism problem}\\ \Gamma=(\Omega,E) \mbox{ is a graph}\\ \Omega \mbox{ is the vertex set, } E\subseteq \Omega^2 \mbox{ is the edge (arc) set}\\ \mbox{For graphs } \Gamma=(\Omega,E) \mbox{ and } \Gamma'=(\Omega',E'),\\ \mbox{Iso}(\Gamma,\Gamma')=\{f:\Omega\to\Omega' \mbox{ a bijection } \mid E^f=E'\}.\\ \mbox{Graph ISO}\\ \mbox{Given two graphs } \Gamma \mbox{ and } \Gamma', \mbox{ test whether } \mbox{Iso}(\Gamma,\Gamma')=\varnothing. \end{array}$

Graph ISO consists in finding an algorithm testing isomorphism of two graphs, and performing the minimal number of steps.

We may assume that $\Omega = \Omega'$, so $Iso(\Gamma, \Gamma') \subseteq Sym(\Omega)$. If $f \in Iso(\Gamma, \Gamma') \neq \emptyset$, then $Iso(\Gamma, \Gamma') = Aut(\Gamma)f$ is a coset. $\begin{array}{l} \mbox{Graph isomorphism problem}\\ \Gamma=(\Omega,E) \mbox{ is a graph}\\ \Omega \mbox{ is the vertex set, } E\subseteq \Omega^2 \mbox{ is the edge (arc) set}\\ \mbox{For graphs } \Gamma=(\Omega,E) \mbox{ and } \Gamma'=(\Omega',E'),\\ \mbox{Iso}(\Gamma,\Gamma')=\{f:\Omega\to\Omega'\mbox{ a bijection } \mid E^f=E'\}.\\ \mbox{Graph ISO}\\ \mbox{Given two graphs } \Gamma \mbox{ and } \Gamma',\mbox{ test whether } \mbox{Iso}(\Gamma,\Gamma')=\varnothing. \end{array}$

Graph ISO consists in finding an algorithm testing isomorphism of two graphs, and performing the minimal number of steps.

We may assume that $\Omega = \Omega'$, so $Iso(\Gamma, \Gamma') \subseteq Sym(\Omega)$. If $f \in Iso(\Gamma, \Gamma') \neq \emptyset$, then $Iso(\Gamma, \Gamma') = Aut(\Gamma)f$ is a coset.

Babai, 2015

There is a constant *c* such that for graphs Γ and Γ' of size *n* the set $Iso(\Gamma, \Gamma')$ can be found in a quasipolynomial time $2^{O(\log^c n)}$.

Graph isomorphism problem: Naive algorithm

 Γ is a (simple undirected) graph with vertex set Ω , $|\Omega| = n$.

Naive algorithm

- **1** Set initial coloring: $c(\alpha) = 0$ for all $\alpha \in \Omega$.
- 2 For all $\alpha \in \Omega$, find a multiset $s(\alpha) = \{c(\beta) \mid \beta \in \Omega : (\alpha, \beta) \in E(\Gamma)\}.$
- 3 Define a coloring $c': c'(\alpha) < c'(\beta) \Leftrightarrow s(\alpha) \prec s(\beta)$.
- ④ Go to Step 2 if $|c| \neq |c'|$; otherwise output c.

Graph isomorphism problem: Naive algorithm

 Γ is a (simple undirected) graph with vertex set Ω , $|\Omega| = n$.

Naive algorithm

- **1** Set initial coloring: $c(\alpha) = 0$ for all $\alpha \in \Omega$.
- 2 For all $\alpha \in \Omega$, find a multiset $s(\alpha) = \{c(\beta) \mid \beta \in \Omega : (\alpha, \beta) \in E(\Gamma)\}.$
- 3 Define a coloring $c': c'(\alpha) < c'(\beta) \Leftrightarrow s(\alpha) \prec s(\beta)$.
- ④ Go to Step 2 if $|c| \neq |c'|$; otherwise output c.

Babai-Erdös-Selkow, 1979

Almost all graphs are completely individualized (into n different colors) after 2 rounds \implies for them the isomorphism problem can be solved in linear time in n.

Bottleneck: Regular graphs (all the vertices have the same valency).

Let Γ be a graph (directed or undirected) with vertex set $\Omega.$

- Set initial coloring: c(α, β) = 0, 1, or 2 depending on (α, β) is loop, arc, or neither loop nor arc, for all (α, β) ∈ Ω × Ω.
- 2 For all $(\alpha, \beta) \in \Omega \times \Omega$, find a multiset $s(\alpha, \beta) = \{s_{\gamma}(\alpha, \beta) : \gamma \in \Omega\}, s_{\gamma}(\alpha, \beta) = (c(\alpha, \gamma), c(\gamma, \beta)).$
- 3 Define a coloring $c': c'(\alpha, \beta) < c'(\gamma, \delta) \Leftrightarrow s(\alpha, \beta) \prec s(\gamma, \delta)$.
- ④ Go to Step 2 if $|c| \neq |c'|$; otherwise output c.

Let Γ be a graph (directed or undirected) with vertex set $\Omega.$

- Set initial coloring: c(α, β) = 0, 1, or 2 depending on (α, β) is loop, arc, or neither loop nor arc, for all (α, β) ∈ Ω × Ω.
- 2 For all $(\alpha, \beta) \in \Omega \times \Omega$, find a multiset $s(\alpha, \beta) = \{s_{\gamma}(\alpha, \beta) : \gamma \in \Omega\}, s_{\gamma}(\alpha, \beta) = (c(\alpha, \gamma), c(\gamma, \beta)).$
- 3 Define a coloring $c': c'(\alpha, \beta) < c'(\gamma, \delta) \Leftrightarrow s(\alpha, \beta) \prec s(\gamma, \delta)$.
- ④ Go to Step 2 if $|c| \neq |c'|$; otherwise output c.
 - The pair $\mathcal{X} = (\Omega, S)$, where S is a partition of Ω^2 into the color classes obtained by WL-algorithm, is the WL-closure of Γ .
 - $\operatorname{Aut}(\Gamma) = \operatorname{Aut}(\mathcal{X}) = \{f \in \operatorname{Sym}(\Omega) : s^f = s, s \in S\}.$

Let Γ be a graph (directed or undirected) with vertex set $\Omega.$

- ④ Set initial coloring: c(α, β) = 0, 1, or 2 depending on (α, β) is loop, arc, or neither loop nor arc, for all (α, β) ∈ Ω × Ω.
- 2 For all $(\alpha, \beta) \in \Omega \times \Omega$, find a multiset $s(\alpha, \beta) = \{s_{\gamma}(\alpha, \beta) : \gamma \in \Omega\}, s_{\gamma}(\alpha, \beta) = (c(\alpha, \gamma), c(\gamma, \beta)).$
- 3 Define a coloring $c': c'(\alpha, \beta) < c'(\gamma, \delta) \Leftrightarrow s(\alpha, \beta) \prec s(\gamma, \delta)$.
- ④ Go to Step 2 if $|c| \neq |c'|$; otherwise output c.
 - The pair *X* = (Ω, S), where S is a partition of Ω² into the color classes obtained by WL-algorithm, is the WL-closure of Γ.
 - $\operatorname{Aut}(\Gamma) = \operatorname{Aut}(\mathcal{X}) = \{f \in \operatorname{Sym}(\Omega) : s^f = s, s \in S\}.$
 - Conjecture: Orb(Aut(X)) coincides with the color classes of the vertex set Ω, given by c(α, α), α ∈ Ω.

Let Γ be a graph (directed or undirected) with vertex set $\Omega.$

- ④ Set initial coloring: c(α, β) = 0, 1, or 2 depending on (α, β) is loop, arc, or neither loop nor arc, for all (α, β) ∈ Ω × Ω.
- 2 For all $(\alpha, \beta) \in \Omega \times \Omega$, find a multiset $s(\alpha, \beta) = \{s_{\gamma}(\alpha, \beta) : \gamma \in \Omega\}, s_{\gamma}(\alpha, \beta) = (c(\alpha, \gamma), c(\gamma, \beta)).$
- 3 Define a coloring $c': c'(\alpha, \beta) < c'(\gamma, \delta) \Leftrightarrow s(\alpha, \beta) \prec s(\gamma, \delta)$.
- ④ Go to Step 2 if $|c| \neq |c'|$; otherwise output c.
 - The pair *X* = (Ω, S), where S is a partition of Ω² into the color classes obtained by WL-algorithm, is the WL-closure of Γ.
 - $\operatorname{Aut}(\Gamma) = \operatorname{Aut}(\mathcal{X}) = \{f \in \operatorname{Sym}(\Omega) : s^f = s, s \in S\}.$
 - Conjecture: Orb(Aut(X)) coincides with the color classes of the vertex set Ω, given by c(α, α), α ∈ Ω.
 - Conjecture is wrong (Adel'son-Vel'ski–W–L–Faradzev, 1969).

m-dim WL-algorithm and WL-dimension In fact, the WL-algorithm deals with any $\Gamma = (\Omega, P)$, where P is a (colored) partition of Ω^2 .

If $\Gamma = (\Omega, P)$, where P is a partition of Ω^m , then one can define *m*-dim WL-closure WL_{*m*}(Γ) of Γ using an algorithm similar to the classical 2-dim WL-algorithm.

The WL-dimension WL(Γ) of Γ is the smallest positive integer *m* such that Γ can be uniquely identified by *m*-dim WL-algorithm.

Kiefer–Ponomarenko–Schweitzer, 2017 If Γ is a planar graph, then WL-dim(Γ) \leq 3. *m*-dim WL-algorithm and WL-dimension In fact, the WL-algorithm deals with any $\Gamma = (\Omega, P)$, where P is a (colored) partition of Ω^2 .

If $\Gamma = (\Omega, P)$, where P is a partition of Ω^m , then one can define *m*-dim WL-closure WL_{*m*}(Γ) of Γ using an algorithm similar to the classical 2-dim WL-algorithm.

The WL-dimension WL(Γ) of Γ is the smallest positive integer *m* such that Γ can be uniquely identified by *m*-dim WL-algorithm.

Kiefer–Ponomarenko–Schweitzer, 2017 If Γ is a planar graph, then WL-dim(Γ) \leq 3.

If there is a constant c > 0 such that $\dim_{WL}(\Gamma) \leq c$ for every finite graph Γ , then Graph ISO can be solved in time poly(n).

The notion of WL-dimension can be also formulated in the language of the counting first order logic.

Graphs and *m*-fragment of first-order logic

The language of the logic \mathfrak{C}_m , $m \in \mathbb{N}$ for graphs:

- *m* variables $x_1, x_2 \dots, x_m$
- a binary predicate $e(\cdot, \cdot)$
- \bullet a symbol =; and logical connectives $\lor,\land,\rightarrow,\lnot$
- counting quantifiers $\exists^i x, i \in \mathbb{N}$.

Interpretation of formulas of \mathfrak{C}_m for a graph Γ :

- x₁, x₂..., x_m are vertices of Γ
- $e(x_i, x_j)$ is true if there is an edge between x_i and x_j in Γ
- $\exists^i x \varphi(x)$ the formula $\varphi(x)$ is true for at least *i* vertices of Γ
- $\Gamma \models \varphi$ means that φ holds true on Γ .

Example: $\Gamma \models (\forall x_1)(\exists^5 x_2)e(x_1, x_2)$ means deg $(\Gamma) \ge 5$.

 $\mathfrak{C}_m\text{-}\mathsf{equivalency},$ WL-dimension, and Graph ISO Graphs Γ and Δ are $\mathfrak{C}_m\text{-}\mathsf{equivalent},$ if

$$\forall \varphi \in \mathfrak{C}_m : \quad \Gamma \models \varphi \Longleftrightarrow \Delta \models \varphi.$$

The WL-dimension $\dim_{WL}(\Gamma)$ of a graph Γ is the least *m* such that every graph Δ which is \mathfrak{C}_{m+1} -equivalent to Γ is isomorphic to Γ .

Cai–Fürer–Immerman, 1992 There is a constant c > 0 and a family of graphs Γ_n of degree n, $n \in \mathbb{N}$, such that $\dim_{WL}(\Gamma_n) \ge cn$.

 $\mathfrak{C}_m\text{-}\mathsf{equivalency},$ WL-dimension, and Graph ISO Graphs Γ and Δ are $\mathfrak{C}_m\text{-}\mathsf{equivalent},$ if

$$\forall \varphi \in \mathfrak{C}_m : \quad \Gamma \models \varphi \Longleftrightarrow \Delta \models \varphi.$$

The WL-dimension $\dim_{WL}(\Gamma)$ of a graph Γ is the least *m* such that every graph Δ which is \mathfrak{C}_{m+1} -equivalent to Γ is isomorphic to Γ .

Cai–Fürer–Immerman, 1992 There is a constant c > 0 and a family of graphs Γ_n of degree n, $n \in \mathbb{N}$, such that $\dim_{WL}(\Gamma_n) \ge cn$.

Nevertheless,

 $\Gamma = (\Omega, R)$ and $\Gamma' = (\Omega, R')$ graphs

 \Downarrow Weisfeiler–Leman algorithm \Downarrow

 $\mathcal{X} = (\Omega, S)$ and $\mathcal{X}' = (\Omega, S')$ WL-closures of Γ and Γ'

 $\mathsf{Iso}(\Gamma, \Gamma') = \mathsf{Iso}(\mathcal{X}, \mathcal{X}').$

WL-closures and *m*-closures of permutation groups Ω is a finite set, $G \leq \text{Sym}(\Omega)$, and *m* is a positive integer *G* acts componentwisely on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$ Orb_{*m*}(*G*) is the set of orbits of this action (*m*-orbits). WL-closures and *m*-closures of permutation groups Ω is a finite set, $G \leq \text{Sym}(\Omega)$, and *m* is a positive integer *G* acts componentwisely on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$ $\text{Orb}_m(G)$ is the set of orbits of this action (*m*-orbits). $\text{Inv}_m(G) = (\Omega, \text{Orb}_m(G))$ can be considered as a specific combinatorial structure on Ω consisting of (colored) *m*-ary relations.

m-dim WL-closure of $Inv_m(G)$ is always $Inv_m(G)$ itself.

WL-closures and *m*-closures of permutation groups Ω is a finite set, $G \leq \text{Sym}(\Omega)$, and *m* is a positive integer *G* acts componentwisely on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$ Orb_{*m*}(*G*) is the set of orbits of this action (*m*-orbits). Inv_{*m*}(*G*) = $(\Omega, \text{Orb}_m(G))$ can be considered as a specific combinatorial structure on Ω consisting of (colored) *m*-ary relations.

m-dim WL-closure of $Inv_m(G)$ is always $Inv_m(G)$ itself.

Equivalently,

$$G^{(m)} = \{g \in \mathsf{Sym}(\Omega) : \Delta^g = \Delta, \Delta \in \mathsf{Orb}_m(G)\} = \mathsf{Aut}(\mathsf{Inv}_m(G)).$$

m-Closure problem for solvable groups

m-Closure problem

Given a permutation group G, find $G^{(m)}$.

Here groups are specified by list of generating permutations.

m-Closure problem for solvable groups

m-Closure problem

Given a permutation group G, find $G^{(m)}$.

Here groups are specified by list of generating permutations.

Ponomarenko-V., 2023

Given an integer $m \ge 3$, the *m*-closure of a solvable permutation group of degree *n* can be found in time $n^{O(m)}$.

It follows from the definition that

$$G^{(1)} \ge G^{(2)} \ge \ldots \ge G^{(m)} \ge \ldots \ge G^{(|\Omega|-1)} = G.$$

It follows from the definition that

$$G^{(1)} \ge G^{(2)} \ge \ldots \ge G^{(m)} \ge \ldots \ge G^{(|\Omega|-1)} = G.$$

How far can $G^{(m)}$ be from G?

The *m*-closure of *m*-transitive group $G \leq \text{Sym}(\Omega)$ is $\text{Sym}(\Omega)$, so if $\Omega = \underbrace{\Delta_1 \cup \ldots \cup \Delta_s}_{1-\text{orbits}}$, then $G^{(1)} = \text{Sym}(\Delta_1) \times \ldots \times \text{Sym}(\Delta_s)$.

It follows from the definition that

$$G^{(1)} \ge G^{(2)} \ge \ldots \ge G^{(m)} \ge \ldots \ge G^{(|\Omega|-1)} = G.$$

How far can $G^{(m)}$ be from G?

The *m*-closure of *m*-transitive group $G \leq \text{Sym}(\Omega)$ is $\text{Sym}(\Omega)$, so if $\Omega = \underbrace{\Delta_1 \cup \ldots \cup \Delta_s}_{1-\text{orbits}}$, then $G^{(1)} = \text{Sym}(\Delta_1) \times \ldots \times \text{Sym}(\Delta_s)$.

Suppose $m \ge 2$. Then (1) G is abelian $\Rightarrow G^{(m)}$ is abelian (2) G is of odd order $\Rightarrow G^{(m)}$ is of odd order (3) G is a p-group $\Rightarrow G^{(m)}$ is a p-group (Wielandt, 1969)

It follows from the definition that

$$G^{(1)} \ge G^{(2)} \ge \ldots \ge G^{(m)} \ge \ldots \ge G^{(|\Omega|-1)} = G.$$

How far can $G^{(m)}$ be from G?

The *m*-closure of *m*-transitive group $G \leq \text{Sym}(\Omega)$ is $\text{Sym}(\Omega)$, so if $\Omega = \underbrace{\Delta_1 \cup \ldots \cup \Delta_s}_{1-\text{orbits}}$, then $G^{(1)} = \text{Sym}(\Delta_1) \times \ldots \times \text{Sym}(\Delta_s)$.

Suppose $m \ge 2$. Then

- **1** G is abelian \Rightarrow G^(m) is abelian
- 2 G is of odd order \Rightarrow G^(m) is of odd order
- 3 G is a p-group \Rightarrow $G^{(m)}$ is a p-group (Wielandt, 1969)
- ④ G is nilpotent \Rightarrow $G^{(m)}$ is nilpotent (~ 2020).

Solvable permutation groups

There are 2-transitive solvable groups, say, $AGL(1, p)^{(2)} = Sym(p)$ for a prime p, so assuming $p \ge 5$, we get

G is solvable $\neq G^{(2)}$ is solvable.

Solvable permutation groups

There are 2-transitive solvable groups, say, $AGL(1, p)^{(2)} = Sym(p)$ for a prime p, so assuming $p \ge 5$, we get

G is solvable $\neq G^{(2)}$ is solvable.

A. Seress (1995): If G is a solvable primitive group, then $G = G^{(5)}$.

Solvable permutation groups

There are 2-transitive solvable groups, say, $AGL(1, p)^{(2)} = Sym(p)$ for a prime p, so assuming $p \ge 5$, we get

G is solvable $\neq G^{(2)}$ is solvable.

A. Seress (1995):

If G is a solvable primitive group, then $G = G^{(5)}$.

E. O'Brien, I. Ponomarenko, A. V., and E. Vdovin (2021): If $m \ge 3$ and G is solvable, then $G^{(m)}$ is solvable.

Babai–Lucks argument

Babai–Lucks argument

The composition width cw(H) of a group H is the least positive integer d such that every nonabelian composition factor of a group H can be embedded in Sym(d).

Babai-Lucks, 1983

Let $\Gamma = (\Omega, E)$ be a graph. Given $H \leq \text{Sym}(\Omega)$ with $cw(H) \leq d$, the group $\text{Aut}(\Gamma) \cap H$ can be constructed in time $n^{f(d)}$.

Corollary

Let $G \leq \text{Sym}(\Omega)$ and $m \in \mathbb{N}$. Given $H \leq \text{Sym}(\Omega)$ with $cw(H) \leq d$, the group $G^{(m)} \cap H$ can be constructed in time $n^{f(d)}$.

 $G^{(m)} \cap H$ is called the relative *m*-closure of *G* with respect to *H*.

Inside the proof

A class \Re of (abstract) groups is said to be complete if it is closed with respect to taking subgroups, quotients, and extensions.

The class of all permutation groups of degree at most n that belong to \mathfrak{K} is denoted by \mathfrak{K}_n .

A permutation group is said to be non-basic if it is contained in a wreath product with the product action, and it is basic otherwise.

Let $m, n \in \mathbb{N}$, $m \geq 3$, and \mathfrak{K} a complete class of groups. Then

- Is R_n is closed with respect to taking the *m*-closure if and only if R_n contains the *m*-closure of every primitive basic group in R_n,
- 2 the *m*-closure of any group in R_n can be found in time poly(*n*) by accessing oracles for finding the *m*-closure of every primitive basic group in R_n and the relative *m*-closure of every group in R_n with respect to any group in R_n.

2-Closures of supersolvable groups

A group G is called *supersolvable* if it has a finite normal series with cyclic factors, that is

$$G=G_0\geq G_1\geq \ldots \geq G_{n-1}\geq G_n=1,$$

where $G_i \subseteq G$ and G_i/G_{i-1} is cyclic for every $i = 1, \ldots, n$.

2-Closures of supersolvable groups

A group G is called *supersolvable* if it has a finite normal series with cyclic factors, that is

$$G=G_0\geq G_1\geq \ldots \geq G_{n-1}\geq G_n=1,$$

where $G_i \trianglelefteq G$ and G_i/G_{i-1} is cyclic for every $i = 1, \ldots, n$.

The problem is that

Composition factors of the 2-closure of every supersolvable permutation group G are cyclic or alternating groups.

2-Closures of supersolvable groups

A group G is called *supersolvable* if it has a finite normal series with cyclic factors, that is

$$G=G_0\geq G_1\geq \ldots\geq G_{n-1}\geq G_n=1,$$

where $G_i \trianglelefteq G$ and G_i/G_{i-1} is cyclic for every $i = 1, \ldots, n$.

The problem is that

Composition factors of the 2-closure of every supersolvable permutation group G are cyclic or alternating groups.

Ponomarenko-V., 2020

The 2-closure problem for a supersolvable permutation group G of degree n can be solved in time poly(n).

Key ingredients of the proof

- **(1)** Embedding of G in a large solvable group H
- 2 Constructing of the relative closure K of G inside H via the Babai–Lucks algorithm
- 3 Finding the certificates X_S (the sets of generators) of nonsolvable primitive sections S of the closure $K^{(2)}$ of K
- Putting $X = \bigcup X_S$ and setting $G^{(2)} = \langle K, X \rangle$.

Key ingredients of the proof

- **(1)** Embedding of G in a large solvable group H
- 2 Constructing of the relative closure K of G inside H via the Babai–Lucks algorithm
- 3 Finding the certificates X_S (the sets of generators) of nonsolvable primitive sections S of the closure $K^{(2)}$ of K
- ④ Putting $X = \bigcup X_S$ and setting $G^{(2)} = \langle K, X \rangle$.

The same idea can be possibly applied to the general case of the m-closure problem.

Group isomorphism problem

Group ISO

For groups G and H given by their multiplicative tables, test whether $Iso(G, H) = \emptyset$.

Group isomorphism problem

Group ISO For groups G and H given by their multiplicative tables, test whether $Iso(G, H) = \emptyset$.

 $\mathsf{Graph}\ \mathsf{ISO} \Rightarrow \mathsf{Group}\ \mathsf{ISO}.$

Group ISO can be solved in time $n^{O(\log n)}$.

Group isomorphism problem

Group ISO For groups G and H given by their multiplicative tables, test whether $Iso(G, H) = \emptyset$.

 $\mathsf{Graph}\ \mathsf{ISO} \Rightarrow \mathsf{Group}\ \mathsf{ISO}.$

Group ISO can be solved in time $n^{O(\log n)}$.

J. Brachter and P. Schweitzer (2020): WL-dimension for groups.

There is no an analog of Cai-Fürer-Immerman theorem for groups.

J. Brachter and P. Schweitzer (2022)

If G is indistinguishable from H by 5-dim WL-algorithm, then G and H have the same composition factors.