Permutation groups and the graph isomorphism problem

Andrey Vasil'ev

Sobolev Institute of Mathematics

Omsk
26-30.09.2023

Graph isomorphism problem

$\Gamma=(\Omega, E)$ is a graph
Ω is the vertex set, $E \subseteq \Omega^{2}$ is the edge (arc) set
For graphs $\Gamma=(\Omega, E)$ and $\Gamma^{\prime}=\left(\Omega^{\prime}, E^{\prime}\right)$, Iso $\left(\Gamma, \Gamma^{\prime}\right)=\left\{f: \Omega \rightarrow \Omega^{\prime}\right.$ a bijection $\left.\mid E^{f}=E^{\prime}\right\}$.

Graph ISO

Given two graphs Γ and Γ^{\prime}, test whether $\operatorname{Iso}\left(\Gamma^{\prime} \Gamma^{\prime}\right)=\varnothing$.

Graph isomorphism problem

$\Gamma=(\Omega, E)$ is a graph
Ω is the vertex set, $E \subseteq \Omega^{2}$ is the edge (arc) set
For graphs $\Gamma=(\Omega, E)$ and $\Gamma^{\prime}=\left(\Omega^{\prime}, E^{\prime}\right)$, Iso $\left(\Gamma, \Gamma^{\prime}\right)=\left\{f: \Omega \rightarrow \Omega^{\prime}\right.$ a bijection $\left.\mid E^{f}=E^{\prime}\right\}$.

Graph ISO

Given two graphs Γ and Γ^{\prime}, test whether Iso $\left(\Gamma^{\prime} \Gamma^{\prime}\right)=\varnothing$.
Graph ISO consists in finding an algorithm testing isomorphism of two graphs, and performing the minimal number of steps.
We may assume that $\Omega=\Omega^{\prime}$, so $\operatorname{Iso}\left(\Gamma, \Gamma^{\prime}\right) \subseteq \operatorname{Sym}(\Omega)$. If $f \in \operatorname{Iso}\left(\Gamma, \Gamma^{\prime}\right) \neq \varnothing$, then Iso($\left.\Gamma, \Gamma^{\prime}\right)=\operatorname{Aut}(\Gamma) f$ is a coset.

Graph isomorphism problem

$\Gamma=(\Omega, E)$ is a graph
Ω is the vertex set, $E \subseteq \Omega^{2}$ is the edge (arc) set
For graphs $\Gamma=(\Omega, E)$ and $\Gamma^{\prime}=\left(\Omega^{\prime}, E^{\prime}\right)$,
Iso $\left(\Gamma, \Gamma^{\prime}\right)=\left\{f: \Omega \rightarrow \Omega^{\prime}\right.$ a bijection $\left.\mid E^{f}=E^{\prime}\right\}$.

Graph ISO

Given two graphs Γ and Γ^{\prime}, test whether $\operatorname{Iso}\left(\Gamma^{\prime} \Gamma^{\prime}\right)=\varnothing$.
Graph ISO consists in finding an algorithm testing isomorphism of two graphs, and performing the minimal number of steps.
We may assume that $\Omega=\Omega^{\prime}$, so $\operatorname{Iso}\left(\Gamma, \Gamma^{\prime}\right) \subseteq \operatorname{Sym}(\Omega)$. If $f \in \operatorname{Iso}\left(\Gamma, \Gamma^{\prime}\right) \neq \varnothing$, then Iso $\left(\Gamma^{\prime}, \Gamma^{\prime}\right)=\operatorname{Aut}(\Gamma) f$ is a coset.

Babai, 2015

There is a constant c such that for graphs Γ and Γ^{\prime} of size n the set Iso($\left.\Gamma, \Gamma^{\prime}\right)$ can be found in a quasipolynomial time $2^{O\left(\log ^{c} n\right)}$.

Graph isomorphism problem: Naive algorithm
Γ is a (simple undirected) graph with vertex set $\Omega,|\Omega|=n$.
Naive algorithm
(1) Set initial coloring: $c(\alpha)=0$ for all $\alpha \in \Omega$.
(2) For all $\alpha \in \Omega$, find a multiset

$$
s(\alpha)=\{c(\beta) \mid \beta \in \Omega:(\alpha, \beta) \in E(\Gamma)\} .
$$

(3) Define a coloring $c^{\prime}: c^{\prime}(\alpha)<c^{\prime}(\beta) \Leftrightarrow s(\alpha) \prec s(\beta)$.
(4) Go to Step 2 if $|c| \neq\left|c^{\prime}\right|$; otherwise output c.

Graph isomorphism problem: Naive algorithm
Γ is a (simple undirected) graph with vertex set $\Omega,|\Omega|=n$.
Naive algorithm
(1) Set initial coloring: $\mathrm{c}(\alpha)=0$ for all $\alpha \in \Omega$.
(2) For all $\alpha \in \Omega$, find a multiset

$$
s(\alpha)=\{c(\beta) \mid \beta \in \Omega:(\alpha, \beta) \in E(\Gamma)\} .
$$

(3) Define a coloring $c^{\prime}: c^{\prime}(\alpha)<c^{\prime}(\beta) \Leftrightarrow s(\alpha) \prec s(\beta)$.
(4) Go to Step 2 if $|c| \neq\left|c^{\prime}\right|$; otherwise output c.

Babai-Erdös-Selkow, 1979

Almost all graphs are completely individualized (into n different colors) after 2 rounds \Longrightarrow for them the isomorphism problem can be solved in linear time in n.

Bottleneck: Regular graphs (all the vertices have the same valency).

Weisfeiler-Leman algorithm (1968)

Let Γ be a graph (directed or undirected) with vertex set Ω.

WL-algorithm

(1) Set initial coloring: $c(\alpha, \beta)=0$, 1 , or 2 depending on (α, β) is loop, arc, or neither loop nor arc, for all $(\alpha, \beta) \in \Omega \times \Omega$.
(2) For all $(\alpha, \beta) \in \Omega \times \Omega$, find a multiset $s(\alpha, \beta)=\left\{s_{\gamma}(\alpha, \beta): \gamma \in \Omega\right\}, s_{\gamma}(\alpha, \beta)=(c(\alpha, \gamma), c(\gamma, \beta))$.
(3) Define a coloring $c^{\prime}: c^{\prime}(\alpha, \beta)<c^{\prime}(\gamma, \delta) \Leftrightarrow s(\alpha, \beta) \prec s(\gamma, \delta)$.
(4) Go to Step 2 if $|c| \neq\left|c^{\prime}\right|$; otherwise output c.

Weisfeiler-Leman algorithm (1968)

Let Γ be a graph (directed or undirected) with vertex set Ω.

WL-algorithm

(1) Set initial coloring: $c(\alpha, \beta)=0$, 1 , or 2 depending on (α, β) is loop, arc, or neither loop nor arc, for all $(\alpha, \beta) \in \Omega \times \Omega$.
(2) For all $(\alpha, \beta) \in \Omega \times \Omega$, find a multiset $s(\alpha, \beta)=\left\{s_{\gamma}(\alpha, \beta): \gamma \in \Omega\right\}, s_{\gamma}(\alpha, \beta)=(c(\alpha, \gamma), c(\gamma, \beta))$.
(3) Define a coloring $c^{\prime}: c^{\prime}(\alpha, \beta)<c^{\prime}(\gamma, \delta) \Leftrightarrow s(\alpha, \beta) \prec s(\gamma, \delta)$.
(4) Go to Step 2 if $|c| \neq\left|c^{\prime}\right|$; otherwise output c.

- The pair $\mathcal{X}=(\Omega, S)$, where S is a partition of Ω^{2} into the color classes obtained by WL-algorithm, is the WL-closure of Γ.
- $\operatorname{Aut}(\Gamma)=\operatorname{Aut}(\mathcal{X})=\left\{f \in \operatorname{Sym}(\Omega): s^{f}=s, s \in S\right\}$.

Weisfeiler-Leman algorithm (1968)

Let Γ be a graph (directed or undirected) with vertex set Ω.

WL-algorithm

(1) Set initial coloring: $c(\alpha, \beta)=0,1$, or 2 depending on (α, β) is loop, arc, or neither loop nor arc, for all $(\alpha, \beta) \in \Omega \times \Omega$.
(2) For all $(\alpha, \beta) \in \Omega \times \Omega$, find a multiset $s(\alpha, \beta)=\left\{s_{\gamma}(\alpha, \beta): \gamma \in \Omega\right\}, s_{\gamma}(\alpha, \beta)=(c(\alpha, \gamma), c(\gamma, \beta))$.
(3) Define a coloring $c^{\prime}: c^{\prime}(\alpha, \beta)<c^{\prime}(\gamma, \delta) \Leftrightarrow s(\alpha, \beta) \prec s(\gamma, \delta)$.
(4) Go to Step 2 if $|c| \neq\left|c^{\prime}\right|$; otherwise output c.

- The pair $\mathcal{X}=(\Omega, S)$, where S is a partition of Ω^{2} into the color classes obtained by WL-algorithm, is the WL-closure of Γ.
- $\operatorname{Aut}(\Gamma)=\operatorname{Aut}(\mathcal{X})=\left\{f \in \operatorname{Sym}(\Omega): s^{f}=s, s \in S\right\}$.
- Conjecture: $\operatorname{Orb}(\operatorname{Aut}(\mathcal{X}))$ coincides with the color classes of the vertex set Ω, given by $c(\alpha, \alpha), \alpha \in \Omega$.

Weisfeiler-Leman algorithm (1968)

Let Γ be a graph (directed or undirected) with vertex set Ω.

WL-algorithm

(1) Set initial coloring: $c(\alpha, \beta)=0,1$, or 2 depending on (α, β) is loop, arc, or neither loop nor arc, for all $(\alpha, \beta) \in \Omega \times \Omega$.
(2) For all $(\alpha, \beta) \in \Omega \times \Omega$, find a multiset $s(\alpha, \beta)=\left\{s_{\gamma}(\alpha, \beta): \gamma \in \Omega\right\}, s_{\gamma}(\alpha, \beta)=(c(\alpha, \gamma), c(\gamma, \beta))$.
(3) Define a coloring $c^{\prime}: c^{\prime}(\alpha, \beta)<c^{\prime}(\gamma, \delta) \Leftrightarrow s(\alpha, \beta) \prec s(\gamma, \delta)$.
(4) Go to Step 2 if $|c| \neq\left|c^{\prime}\right|$; otherwise output c.

- The pair $\mathcal{X}=(\Omega, S)$, where S is a partition of Ω^{2} into the color classes obtained by WL-algorithm, is the WL-closure of Γ.
- $\operatorname{Aut}(\Gamma)=\operatorname{Aut}(\mathcal{X})=\left\{f \in \operatorname{Sym}(\Omega): s^{f}=s, s \in S\right\}$.
- Conjecture: $\operatorname{Orb}(\operatorname{Aut}(\mathcal{X}))$ coincides with the color classes of the vertex set Ω, given by $c(\alpha, \alpha), \alpha \in \Omega$.
- Conjecture is wrong (Adel'son-Vel'ski-W-L-Faradzev, 1969).

m-dim WL-algorithm and WL-dimension

In fact, the WL-algorithm deals with any $\Gamma=(\Omega, P)$, where P is a (colored) partition of Ω^{2}.
If $\Gamma=(\Omega, P)$, where P is a partition of Ω^{m}, then one can define m-dim WL-closure $\mathrm{WL}_{m}(\Gamma)$ of Γ using an algorithm similar to the classical 2-dim WL-algorithm.
The WL-dimension WL (Γ) of Γ is the smallest positive integer m such that Γ can be uniquely identified by m-dim WL-algorithm.

Kiefer-Ponomarenko-Schweitzer, 2017
If Γ is a planar graph, then $W L-\operatorname{dim}(\Gamma) \leq 3$.
m-dim WL-algorithm and WL-dimension In fact, the WL-algorithm deals with any $\Gamma=(\Omega, P)$, where P is a (colored) partition of Ω^{2}.
If $\Gamma=(\Omega, P)$, where P is a partition of Ω^{m}, then one can define m-dim WL-closure $\mathrm{WL}_{m}(\Gamma)$ of Γ using an algorithm similar to the classical 2-dim WL-algorithm.

The WL-dimension WL (Γ) of Γ is the smallest positive integer m such that Γ can be uniquely identified by m-dim WL-algorithm.

Kiefer-Ponomarenko-Schweitzer, 2017

If Γ is a planar graph, then $W L-\operatorname{dim}(\Gamma) \leq 3$.

If there is a constant $c>0$ such that $\operatorname{dim}_{W L}(\Gamma) \leq c$ for every finite graph Γ, then Graph ISO can be solved in time poly (n).

The notion of WL-dimension can be also formulated in the language of the counting first order logic.

Graphs and m-fragment of first-order logic

The language of the logic $\mathfrak{C}_{m}, m \in \mathbb{N}$ for graphs:

- m variables $x_{1}, x_{2} \ldots, x_{m}$
- a binary predicate $e(\cdot, \cdot)$
- a symbol $=$; and logical connectives $\vee, \wedge, \rightarrow, \neg$
- counting quantifiers $\exists^{i} x, i \in \mathbb{N}$.

Interpretation of formulas of \mathfrak{C}_{m} for a graph Γ :

- $x_{1}, x_{2} \ldots, x_{m}$ are vertices of Γ
- $e\left(x_{i}, x_{j}\right)$ is true if there is an edge between x_{i} and x_{j} in 「
- $\exists^{i} x \varphi(x)$ - the formula $\varphi(x)$ is true for at least i vertices of Γ
- $\Gamma \models \varphi$ means that φ holds true on Γ.

Example: $\Gamma \models\left(\forall x_{1}\right)\left(\exists^{5} x_{2}\right) e\left(x_{1}, x_{2}\right)$ means $\operatorname{deg}(\Gamma) \geq 5$.
\mathfrak{C}_{m}-equivalency, WL-dimension, and Graph ISO Graphs Γ and Δ are \mathfrak{C}_{m}-equivalent, if

$$
\forall \varphi \in \mathfrak{C}_{m}: \quad \Gamma \models \varphi \Longleftrightarrow \Delta \models \varphi
$$

The WL-dimension $\operatorname{dim}_{\mathrm{WL}}(\Gamma)$ of a graph Γ is the least m such that every graph Δ which is \mathfrak{C}_{m+1}-equivalent to Γ is isomorphic to Γ.

Cai-Fürer-Immerman, 1992
There is a constant $c>0$ and a family of graphs Γ_{n} of degree n, $n \in \mathbb{N}$, such that $\operatorname{dim}_{w L}\left(\Gamma_{n}\right) \geq c n$.
\mathfrak{C}_{m}-equivalency, WL-dimension, and Graph ISO Graphs Γ and Δ are \mathfrak{C}_{m}-equivalent, if

$$
\forall \varphi \in \mathfrak{C}_{m}: \quad \Gamma \models \varphi \Longleftrightarrow \Delta \models \varphi
$$

The WL-dimension $\operatorname{dim}_{W L}(\Gamma)$ of a graph Γ is the least m such that every graph Δ which is \mathfrak{C}_{m+1}-equivalent to Γ is isomorphic to Γ.

Cai-Fürer-Immerman, 1992

There is a constant $c>0$ and a family of graphs Γ_{n} of degree n, $n \in \mathbb{N}$, such that $\operatorname{dim}_{\mathrm{WL}}\left(\Gamma_{n}\right) \geq c n$.

Nevertheless,
$\Gamma=(\Omega, R) \quad$ and $\quad \Gamma^{\prime}=\left(\Omega, R^{\prime}\right)$ graphs
\Downarrow Weisfeiler-Leman algorithm \Downarrow

$$
\mathcal{X}=(\Omega, S) \quad \text { and } \quad \mathcal{X}^{\prime}=\left(\Omega, S^{\prime}\right) \text { WL-closures of } \Gamma \text { and } \Gamma^{\prime}
$$

Iso $\left(\Gamma, \Gamma^{\prime}\right)=\operatorname{Iso}\left(\mathcal{X}, \mathcal{X}^{\prime}\right)$.

WL-closures and m-closures of permutation groups Ω is a finite set, $G \leq \operatorname{Sym}(\Omega)$, and m is a positive integer
G acts componentwisely on $\Omega^{m}:\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{g}=\left(\alpha_{1}^{g}, \ldots, \alpha_{m}^{g}\right)$
$\operatorname{Orb}_{m}(G)$ is the set of orbits of this action (m-orbits).

WL-closures and m-closures of permutation groups Ω is a finite set, $G \leq \operatorname{Sym}(\Omega)$, and m is a positive integer
G acts componentwisely on $\Omega^{m}:\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{g}=\left(\alpha_{1}^{g}, \ldots, \alpha_{m}^{g}\right)$
$\operatorname{Orb}_{m}(G)$ is the set of orbits of this action (m-orbits). $\operatorname{lnv}_{m}(G)=\left(\Omega, \operatorname{Orb}_{m}(G)\right)$ can be considered as a specific combinatorial structure on Ω consisting of (colored) m-ary relations.
m-dim WL-closure of $\operatorname{Inv}_{m}(G)$ is always $\operatorname{Inv}_{m}(G)$ itself.

WL-closures and m-closures of permutation groups Ω is a finite set, $G \leq \operatorname{Sym}(\Omega)$, and m is a positive integer
G acts componentwisely on $\Omega^{m}:\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{g}=\left(\alpha_{1}^{g}, \ldots, \alpha_{m}^{g}\right)$
$\operatorname{Orb}_{m}(G)$ is the set of orbits of this action (m-orbits).
$\operatorname{Inv}_{m}(G)=\left(\Omega, \operatorname{Orb}_{m}(G)\right)$ can be considered as a specific combinatorial structure on Ω consisting of (colored) m-ary relations.
m-dim WL-closure of $\operatorname{Inv}_{m}(G)$ is always $\operatorname{lnv}_{m}(G)$ itself.

Definition (H. Wielandt, 1969)

The m-closure $G^{(m)}$ of G is the largest subgroup of $\operatorname{Sym}(\Omega)$ with $\operatorname{Orb}_{m}\left(G^{(m)}\right)=\operatorname{Orb}_{m}(G)$.

Equivalently,

$$
G^{(m)}=\left\{g \in \operatorname{Sym}(\Omega): \Delta^{g}=\Delta, \Delta \in \operatorname{Orb}_{m}(G)\right\}=\operatorname{Aut}\left(\operatorname{lnv}_{m}(G)\right)
$$

m-Closure problem for solvable groups

m-Closure problem
Given a permutation group G, find $G^{(m)}$.
Here groups are specified by list of generating permutations.

m-Closure problem for solvable groups

m-Closure problem

Given a permutation group G, find $G^{(m)}$.
Here groups are specified by list of generating permutations.

Ponomarenko-V., 2023

Given an integer $m \geq 3$, the m-closure of a solvable permutation group of degree n can be found in time $n^{O(m)}$.

Properties of m-closures

It follows from the definition that

$$
G^{(1)} \geq G^{(2)} \geq \ldots \geq G^{(m)} \geq \ldots \geq G^{(|\Omega|-1)}=G .
$$

Properties of m-closures

It follows from the definition that

$$
G^{(1)} \geq G^{(2)} \geq \ldots \geq G^{(m)} \geq \ldots \geq G^{(|\Omega|-1)}=G .
$$

How far can $G^{(m)}$ be from G ?
The m-closure of m-transitive group $G \leq \operatorname{Sym}(\Omega)$ is $\operatorname{Sym}(\Omega)$, so if $\Omega=\underbrace{\Delta_{1} \cup \ldots \cup \Delta_{s}}_{1 \text {-orbits }}$, then $G^{(1)}=\operatorname{Sym}\left(\Delta_{1}\right) \times \ldots \times \operatorname{Sym}\left(\Delta_{s}\right)$.

Properties of m-closures

It follows from the definition that

$$
G^{(1)} \geq G^{(2)} \geq \ldots \geq G^{(m)} \geq \ldots \geq G^{(|\Omega|-1)}=G .
$$

How far can $G^{(m)}$ be from G ?
The m-closure of m-transitive group $G \leq \operatorname{Sym}(\Omega)$ is $\operatorname{Sym}(\Omega)$, so if $\Omega=\underbrace{\Delta_{1} \cup \ldots \cup \Delta_{s}}_{1 \text {-orbits }}$, then $G^{(1)}=\operatorname{Sym}\left(\Delta_{1}\right) \times \ldots \times \operatorname{Sym}\left(\Delta_{s}\right)$.

Suppose $m \geq 2$. Then
(1) G is abelian $\Rightarrow G^{(m)}$ is abelian
(2) G is of odd order $\Rightarrow G^{(m)}$ is of odd order
(3) G is a p-group $\Rightarrow G^{(m)}$ is a p-group (Wielandt, 1969)

Properties of m-closures

It follows from the definition that

$$
G^{(1)} \geq G^{(2)} \geq \ldots \geq G^{(m)} \geq \ldots \geq G^{(|\Omega|-1)}=G .
$$

How far can $G^{(m)}$ be from G ?
The m-closure of m-transitive group $G \leq \operatorname{Sym}(\Omega)$ is $\operatorname{Sym}(\Omega)$, so if $\Omega=\underbrace{\Delta_{1} \cup \ldots \cup \Delta_{s}}_{1 \text {-orbits }}$, then $G^{(1)}=\operatorname{Sym}\left(\Delta_{1}\right) \times \ldots \times \operatorname{Sym}\left(\Delta_{s}\right)$.

Suppose $m \geq 2$. Then
(1) G is abelian $\Rightarrow G^{(m)}$ is abelian
(2) G is of odd order $\Rightarrow G^{(m)}$ is of odd order
(3) G is a p-group $\Rightarrow G^{(m)}$ is a p-group (Wielandt, 1969)
(4) G is nilpotent $\Rightarrow G^{(m)}$ is nilpotent (~ 2020).

Solvable permutation groups

There are 2-transitive solvable groups, say, $\operatorname{AGL}(1, p)^{(2)}=\operatorname{Sym}(p)$ for a prime p, so assuming $p \geq 5$, we get
G is solvable $\nRightarrow G^{(2)}$ is solvable.

Solvable permutation groups

There are 2-transitive solvable groups, say, $\operatorname{AGL}(1, p)^{(2)}=\operatorname{Sym}(p)$ for a prime p, so assuming $p \geq 5$, we get
G is solvable $\nRightarrow G^{(2)}$ is solvable.
A. Seress (1995):

If G is a solvable primitive group, then $G=G^{(5)}$.

Solvable permutation groups

There are 2-transitive solvable groups, say, $\operatorname{AGL}(1, p)^{(2)}=\operatorname{Sym}(p)$ for a prime p, so assuming $p \geq 5$, we get
G is solvable $\nRightarrow G^{(2)}$ is solvable.
A. Seress (1995):

If G is a solvable primitive group, then $G=G^{(5)}$.
E. O'Brien, I. Ponomarenko, A. V., and E. Vdovin (2021):

If $m \geq 3$ and G is solvable, then $G^{(m)}$ is solvable.

Babai-Lucks argument

Babai-Lucks argument

The composition width $c w(H)$ of a group H is the least positive integer d such that every nonabelian composition factor of a group H can be embedded in $\operatorname{Sym}(d)$.

Babai-Lucks, 1983
Let $\Gamma=(\Omega, E)$ be a graph. Given $H \leq \operatorname{Sym}(\Omega)$ with $c w(H) \leq d$, the group $\operatorname{Aut}(\Gamma) \cap H$ can be constructed in time $n^{f(d)}$.

Corollary

Let $G \leq \operatorname{Sym}(\Omega)$ and $m \in \mathbb{N}$. Given $H \leq \operatorname{Sym}(\Omega)$ with $c w(H) \leq d$, the group $G^{(m)} \cap H$ can be constructed in time $n^{f(d)}$.
$G^{(m)} \cap H$ is called the relative m-closure of G with respect to H.

Inside the proof

A class \mathfrak{K} of (abstract) groups is said to be complete if it is closed with respect to taking subgroups, quotients, and extensions.
The class of all permutation groups of degree at most n that belong to \mathfrak{K} is denoted by \mathfrak{K}_{n}.
A permutation group is said to be non-basic if it is contained in a wreath product with the product action, and it is basic otherwise.

Let $m, n \in \mathbb{N}, m \geq 3$, and \mathfrak{K} a complete class of groups. Then
(1) \mathfrak{K}_{n} is closed with respect to taking the m-closure if and only if \mathfrak{K}_{n} contains the m-closure of every primitive basic group in \mathfrak{K}_{n},
(2) the m-closure of any group in \mathfrak{K}_{n} can be found in time poly (n) by accessing oracles for finding the m-closure of every primitive basic group in \mathfrak{K}_{n} and the relative m-closure of every group in \mathfrak{K}_{n} with respect to any group in \mathfrak{K}_{n}.

2-Closures of supersolvable groups

A group G is called supersolvable if it has a finite normal series with cyclic factors, that is

$$
G=G_{0} \geq G_{1} \geq \ldots \geq G_{n-1} \geq G_{n}=1
$$

where $G_{i} \unlhd G$ and G_{i} / G_{i-1} is cyclic for every $i=1, \ldots, n$.

2-Closures of supersolvable groups

A group G is called supersolvable if it has a finite normal series with cyclic factors, that is

$$
G=G_{0} \geq G_{1} \geq \ldots \geq G_{n-1} \geq G_{n}=1
$$

where $G_{i} \unlhd G$ and G_{i} / G_{i-1} is cyclic for every $i=1, \ldots, n$.
The problem is that
Composition factors of the 2-closure of every supersolvable permutation group G are cyclic or alternating groups.

2-Closures of supersolvable groups

A group G is called supersolvable if it has a finite normal series with cyclic factors, that is

$$
G=G_{0} \geq G_{1} \geq \ldots \geq G_{n-1} \geq G_{n}=1
$$

where $G_{i} \unlhd G$ and G_{i} / G_{i-1} is cyclic for every $i=1, \ldots, n$.
The problem is that
Composition factors of the 2-closure of every supersolvable permutation group G are cyclic or alternating groups.

Ponomarenko-V., 2020

The 2-closure problem for a supersolvable permutation group G of degree n can be solved in time poly (n).

Key ingredients of the proof

(1) Embedding of G in a large solvable group H
(2) Constructing of the relative closure K of G inside H via the Babai-Lucks algorithm
(3) Finding the certificates X_{S} (the sets of generators) of nonsolvable primitive sections S of the closure $K^{(2)}$ of K
(4) Putting $X=\bigcup X_{S}$ and setting $G^{(2)}=\langle K, X\rangle$.

Key ingredients of the proof

(1) Embedding of G in a large solvable group H
(2) Constructing of the relative closure K of G inside H via the Babai-Lucks algorithm
(3) Finding the certificates X_{S} (the sets of generators) of nonsolvable primitive sections S of the closure $K^{(2)}$ of K
(4) Putting $X=\bigcup X_{S}$ and setting $G^{(2)}=\langle K, X\rangle$.

The same idea can be possibly applied to the general case of the m-closure problem.

Group isomorphism problem

Group ISO

For groups G and H given by their multiplicative tables, test whether $\operatorname{Iso}(G, H)=\varnothing$.

Group isomorphism problem

Group ISO

For groups G and H given by their multiplicative tables, test whether $\operatorname{Iso}(G, H)=\varnothing$.

Graph ISO \Rightarrow Group ISO.
Group ISO can be solved in time $n^{O(\log n)}$.

Group isomorphism problem

Group ISO

For groups G and H given by their multiplicative tables, test whether $\operatorname{Iso}(G, H)=\varnothing$.

Graph ISO \Rightarrow Group ISO.
Group ISO can be solved in time $n^{O(\log n)}$.
J. Brachter and P. Schweitzer (2020): WL-dimension for groups.

There is no an analog of Cai-Fürer-Immerman theorem for groups.
J. Brachter and P. Schweitzer (2022)

If G is indistinguishable from H by 5 -dim WL-algorithm, then G and H have the same composition factors.

