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Graph isomorphism problem
= (Q,E) is a graph
Q is the vertex set, E C Q2 is the edge (arc) set
For graphs ' = (Q, E) and " = (', E),
Iso(T, ") = {f : Q — Q' a bijection | Ef = E'}.
Graph ISO
Given two graphs I and I, test whether Iso(I", ") = @. J
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Graph ISO
Given two graphs ' and I, test whether Iso(I", ") = @.

Graph ISO consists in finding an algorithm testing isomorphism
of two graphs, and performing the minimal number of steps.

We may assume that Q = @', so Iso(I', ") C Sym(Q).
If f €lso(l,T") # @, then Iso(I', ") = Aut(I)f is a coset.
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Graph isomorphism problem
= (Q,E) is a graph
Q is the vertex set, E C Q2 is the edge (arc) set
For graphs ' = (Q, E) and " = (', E),
Iso(T, ") = {f : Q — Q' a bijection | Ef = E'}.
Graph ISO
Given two graphs ' and I, test whether Iso(I", ") = @.

Graph ISO consists in finding an algorithm testing isomorphism
of two graphs, and performing the minimal number of steps.
We may assume that Q = @', so Iso(I', ") C Sym(Q).

If f €lso(l,T") # @, then Iso(I', ") = Aut(I)f is a coset.

Babai, 2015

There is a constant ¢ such that for graphs I' and [’ of size n the
set Iso(I',T") can be found in a quasipolynomial time 20(log® n)
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Graph isomorphism problem: Naive algorithm
I is a (simple undirected) graph with vertex set Q, |Q| = n.

Naive algorithm
@ Set initial coloring: c(a) = 0 for all & € Q.
@ For all a € Q, find a multiset
s(a) ={c(B) | BE€Q:(a,B8) € E(N)}.
® Define a coloring ¢’: ¢'(a) < ¢/(B) & s(a) < s(B).
@ Go to Step 2 if |c| # |c/|; otherwise output c.
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Graph isomorphism problem: Naive algorithm
I is a (simple undirected) graph with vertex set Q, |Q| = n.

Naive algorithm
@ Set initial coloring: c(a) = 0 for all & € Q.
@ For all a € Q, find a multiset
s(a) ={c(B) | BE€Q:(a,B8) € E(N)}.
® Define a coloring ¢’: ¢'(a) < ¢/(B) & s(a) < s(B).
@ Go to Step 2 if |c| # |c/|; otherwise output c.

Babai—Erdds—Selkow, 1979

Almost all graphs are completely individualized (into n different
colors) after 2 rounds = for them the isomorphism problem can
be solved in linear time in n.

Bottleneck: Regular graphs (all the vertices have the same valency).
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Weisfeiler-Leman algorithm (1968)

Let I' be a graph (directed or undirected) with vertex set Q.

WL-algorithm
@ Set initial coloring: c(a, ) =0, 1, or 2 depending on (a, () is
loop, arc, or neither loop nor arc, for all (a, 8) € Q x Q.
@ For all (o, 8) € 2 x Q, find a multiset
s(a, B) = {sy(a, B) : v € Q}, 5y(a, B) = (c(,7), c(v, B))-
@ Define a coloring ¢’: ¢/(a, 8) < ¢(7,0) < s(a, B) < s(v,9).
@ Go to Step 2 if |c| # |c|; otherwise output c.
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o The pair X = (Q,S), where S is a partition of Q2 into the
color classes obtained by WL-algorithm, is the WL-closure of T.
o Aut(l) = Aut(X) = {f € Sym(Q) : s* =s,5 € S}.
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Let I' be a graph (directed or undirected) with vertex set Q.

WL-algorithm

@

@

Set initial coloring: c(«, 8) =0, 1, or 2 depending on («, 3) is
loop, arc, or neither loop nor arc, for all (a, 8) € Q x Q.

For all (o, 8) € Q2 x Q, find a multiset

s(a, B) = {sy(a, B) : v € Q}, 5y(a, B) = (c(,7), c(v, B))-
Define a coloring ¢’: ¢’(a, B) < (7, 0) < s(a, B) < s(v,9).
Go to Step 2 if |c| # |c’|; otherwise output c.

The pair X = (2, S), where S is a partition of Q2 into the

color classes obtained by WL-algorithm, is the WL-closure of T.

o Aut(l) = Aut(X) = {f € Sym(Q) : s* =s,5 € S}.
o Conjecture: Orb(Aut(X)) coincides with the color classes of

the vertex set , given by c(a, a),a € Q.
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Weisfeiler-Leman algorithm (1968)

Let I' be a graph (directed or undirected) with vertex set Q.

WL-algorithm
@ Set initial coloring: c(a, ) =0, 1, or 2 depending on (a, () is
loop, arc, or neither loop nor arc, for all (a, 8) € Q x Q.
@ For all (o, 8) € 2 x Q, find a multiset
s(a, B) = {sy(a, B) : v € Q}, 5y(a, B) = (c(,7), c(v, B))-
@ Define a coloring ¢’: ¢/(a, 8) < ¢(7,0) < s(a, B) < s(v,9).
@ Go to Step 2 if |c| # |c|; otherwise output c.

o The pair X = (Q,S), where S is a partition of Q2 into the
color classes obtained by WL-algorithm, is the WL-closure of T.

o Aut(l) = Aut(X) = {f € Sym(Q) : s" = 5,5 € S}.

o Conjecture: Orb(Aut(X)) coincides with the color classes of
the vertex set , given by c(a, a),a € Q.

o Conjecture is wrong (Adel'son-Vel'ski-W-L—Faradzev, 1969).
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m-dim WL-algorithm and WL-dimension
In fact, the WL-algorithm deals with any I' = (2, P), where P is a
(colored) partition of Q2.

If I = (2, P), where P is a partition of Q™, then one can define
m-dim WL-closure WL,,(T) of ' using an algorithm similar to the
classical 2-dim WL-algorithm.

The WL-dimension WL(I") of I is the smallest positive integer m
such that I' can be uniquely identified by m-dim WL-algorithm.

Kiefer—-Ponomarenko—Schweitzer, 2017
If I is a planar graph, then WL-dim(I") < 3.
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m-dim WL-algorithm and WL-dimension
In fact, the WL-algorithm deals with any I' = (2, P), where P is a
(colored) partition of Q2.

If I = (2, P), where P is a partition of Q™, then one can define
m-dim WL-closure WL,,(T) of ' using an algorithm similar to the
classical 2-dim WL-algorithm.

The WL-dimension WL(I") of I is the smallest positive integer m
such that I' can be uniquely identified by m-dim WL-algorithm.

Kiefer—-Ponomarenko—Schweitzer, 2017
If I is a planar graph, then WL-dim(I") < 3.

If there is a constant ¢ > 0 such that dimw, (I') < ¢ for every
finite graph I, then Graph ISO can be solved in time poly(n).

The notion of WL-dimension can be also formulated in the
language of the counting first order logic.
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Graphs and m-fragment of first-order logic

The language of the logic €,,, m € N for graphs:

m variables x1, x> ..., xm

©

a binary predicate e(-, -)

©

©

a symbol =; and logical connectives V, A, —, =

©

counting quantifiers 3'x, i € N.

Interpretation of formulas of €, for a graph I':
© X1,X2...,Xm are vertices of I’
o e(xj,x;j) is true if there is an edge between x; and x; in I
o J'xp(x) — the formula o(x) is true for at least i vertices of I

o ' = ¢ means that ¢ holds true on T,

Example: I = (Vx1)(F°x2)e(x1, x2) means deg(l") > 5.
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¢ n-equivalency, WL-dimension, and Graph ISO
Graphs I and A are €,,-equivalent, if
Voelhm: TEep<— AE-Q.
The WL-dimension dimyy (I') of a graph I is the least m such that

every graph A which is €, 1-equivalent to I is isomorphic to I

Cai—Firer-Immerman, 1992

There is a constant ¢ > 0 and a family of graphs I, of degree n,
n € N, such that dimw (') > cn.
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Graphs I and A are €,,-equivalent, if
Voelhm: TEep<— AE-Q.
The WL-dimension dimyy (I') of a graph I is the least m such that

every graph A which is €, 1-equivalent to I is isomorphic to I

Cai—Firer-Immerman, 1992

There is a constant ¢ > 0 and a family of graphs I, of degree n,
n € N, such that dimw (') > cn.

Nevertheless,
r=(Q,R) and "= (Q,R') graphs

| Weisfeiler—Leman algorithm |
X =(Q,95) and X' =(Q,S") WL-closures of I and I’

Iso(I', T") = Iso(X, X7). |
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WL-closures and m-closures of permutation groups
Q is a finite set, G < Sym(Q2), and m is a positive integer
G acts componentwisely on Q™: (a1,...,am)8 = (of,...,a%)

Orby,(G) is the set of orbits of this action (m-orbits).
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Invm(G) = (22, 0rbm,(G)) can be considered as a specific
combinatorial structure on Q consisting of (colored) m-ary relations.
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WL-closures and m-closures of permutation groups
Q is a finite set, G < Sym(Q2), and m is a positive integer

G acts componentwisely on Q™: (a1,...,am)8 = (of,...,a%)
Orby,(G) is the set of orbits of this action (m-orbits).

Invm(G) = (22, 0rbm,(G)) can be considered as a specific
combinatorial structure on Q consisting of (colored) m-ary relations.

m-dim WL-closure of Invy,(G) is always Invy,(G) itself. |

Definition (H. Wielandt, 1969)

The m-closure G(™) of G is the largest subgroup of Sym(Q) with
Orbm(G(™) = Orb,(G).

Equivalently,

G(M = {g € Sym(Q) : A8 = A, A € Orb(G)} = Aut(Invy(G)). J
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m-Closure problem for solvable groups

m-Closure problem
Given a permutation group G, find G("™). J

Here groups are specified by list of generating permutations.
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m-Closure problem for solvable groups

m-Closure problem

Given a permutation group G, find G("™).

Here groups are specified by list of generating permutations.

Ponomarenko-V., 2023
Given an integer m > 3, the m-closure of a solvable permutation
group of degree n can be found in time n©(™).
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Properties of m-closures

It follows from the definition that

GO >c@ > >cm> >¢clel =g, J

10/16



Properties of m-closures

It follows from the definition that

GO >c@ > >cm> >¢clel =g, |

How far can G(™ be from G?

The m-closure of m-transitive group G < Sym(2) is Sym(2), so
if Q=A1U...UA,, then G = Sym(A;) x ... x Sym(As).
—_———

1—orbits
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The m-closure of m-transitive group G < Sym(2) is Sym(2), so
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Suppose m > 2. Then
® G is abelian = G(™ is abelian
@ G is of odd order = G(™ is of odd order
@ G isa p-group = G(™ is a p-group (Wielandt, 1969)

10/16



Properties of m-closures

It follows from the definition that

GO >c@ > >cm> >¢clel =g, |

How far can G(™ be from G?

The m-closure of m-transitive group G < Sym(2) is Sym(2), so

if Q=A1U...UA,, then G = Sym(A;) x ... x Sym(As).
—_———

1—orbits

Suppose m > 2. Then
@ G is abelian = G(™ is abelian
@ G is of odd order = G(™ is of odd order
@ G isa p-group = G(™ is a p-group (Wielandt, 1969)
@ G is nilpotent = G(™ is nilpotent (~ 2020).
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Solvable permutation groups

There are 2-transitive solvable groups, say, AGL(1, p)(?) = Sym(p)
for a prime p, so assuming p > 5, we get

G is solvable % G@ is solvable. J

11/16



Solvable permutation groups

There are 2-transitive solvable groups, say, AGL(1, p)(?) = Sym(p)
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A. Seress (1995):

If G is a solvable primitive group, then G = G®).
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Solvable permutation groups

There are 2-transitive solvable groups, say, AGL(1, p)(?) = Sym(p)
for a prime p, so assuming p > 5, we get

G is solvable % G@ is solvable. J

A. Seress (1995):

If G is a solvable primitive group, then G = G®).

E. O'Brien, |. Ponomarenko, A. V., and E. Vdovin (2021):

If m> 3 and G is solvable, then G(™) is solvable.
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Babai—Lucks argument
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Babai—Lucks argument

The composition width cw(H) of a group H is the least positive
integer d such that every nonabelian composition factor of a
group H can be embedded in Sym(d).

Babai—Lucks, 1983

Let I = (€2, E) be a graph. Given H < Sym(Q2) with cw(H) < d,
the group Aut(I') N H can be constructed in time nf(9).

Corollary

Let G < Sym(€2) and m € N. Given H < Sym(Q2) with cw(H) < d,
the group G(™ N H can be constructed in time nf(4).

G(M N H is called the relative m-closure of G with respect to H.
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Inside the proof

A class R of (abstract) groups is said to be complete if it is closed
with respect to taking subgroups, quotients, and extensions.

The class of all permutation groups of degree at most n that
belong to 8K is denoted by 8.

A permutation group is said to be non-basic if it is contained in a
wreath product with the product action, and it is basic otherwise.

Let m,n €N, m > 3, and K a complete class of groups. Then

@ R, is closed with respect to taking the m-closure if and only if
K, contains the m-closure of every primitive basic group in &,,

@ the m-closure of any group in &, can be found in time poly(n)
by accessing oracles for finding the m-closure of every primitive
basic group in &, and the relative m-closure of every group
in R, with respect to any group in &,.
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2-Closures of supersolvable groups

A group G is called supersolvable if it has a finite normal series
with cyclic factors, that is

G:GOZG12---ZGn—1ZGn:17

where G; 9 G and G;/Gj_1 is cyclic for every i =1,...,n.
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2-Closures of supersolvable groups

A group G is called supersolvable if it has a finite normal series
with cyclic factors, that is

G:GOZG12---ZGn—1ZGn:17

where G; 9 G and G;/Gj_1 is cyclic for every i =1,...,n.

The problem is that

Composition factors of the 2-closure of every supersolvable
permutation group G are cyclic or alternating groups.

Ponomarenko-V., 2020

The 2-closure problem for a supersolvable permutation group G of
degree n can be solved in time poly(n).
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Key ingredients of the proof

Embedding of G in a large solvable group H

Constructing of the relative closure K of G inside H via the
Babai-Lucks algorithm

Finding the certificates Xs (the sets of generators) of
nonsolvable primitive sections S of the closure K2 of K

Putting X = J Xs and setting G® = (K, X).
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Key ingredients of the proof

@ Embedding of G in a large solvable group H

@ Constructing of the relative closure K of G inside H via the
Babai-Lucks algorithm

® Finding the certificates Xs (the sets of generators) of
nonsolvable primitive sections S of the closure K2 of K

@ Putting X = |J Xs and setting G(® = (K, X).

The same idea can be possibly applied to the general case of the
m-closure problem.

15/16



Group isomorphism problem

Group 1SO

For groups G and H given by their multiplicative tables, test
whether Iso(G, H) = @.
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Group 1SO can be solved in time n©(logn).
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Group isomorphism problem

Group 1SO

For groups G and H given by their multiplicative tables, test
whether Iso(G, H) = @.

Graph ISO = Group ISO.
Group 1SO can be solved in time n©(logn),
J. Brachter and P. Schweitzer (2020): WL-dimension for groups.

There is no an analog of Cai—Fiirer-Immerman theorem for groups.

J. Brachter and P. Schweitzer (2022)

If G is indistinguishable from H by 5-dim WL-algorithm, then G
and H have the same composition factors.
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