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Graph isomorphism problem
Γ = (Ω,E ) is a graph
Ω is the vertex set, E ⊆ Ω2 is the edge (arc) set

For graphs Γ = (Ω,E ) and Γ′ = (Ω′,E ′),
Iso(Γ, Γ′) = {f : Ω→ Ω′ a bijection | E f = E ′}.

Graph ISO
Given two graphs Γ and Γ′, test whether Iso(Γ, Γ′) = ∅.

Graph ISO consists in finding an algorithm testing isomorphism
of two graphs, and performing the minimal number of steps.

We may assume that Ω = Ω′, so Iso(Γ, Γ′) ⊆ Sym(Ω).
If f ∈ Iso(Γ, Γ′) 6= ∅, then Iso(Γ, Γ′) = Aut(Γ)f is a coset.

Babai, 2015
There is a constant c such that for graphs Γ and Γ′ of size n the
set Iso(Γ, Γ′) can be found in a quasipolynomial time 2O(logc n).
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Graph isomorphism problem: Naive algorithm
Γ is a (simple undirected) graph with vertex set Ω, |Ω| = n.

Naive algorithm
1 Set initial coloring: c(α) = 0 for all α ∈ Ω.
2 For all α ∈ Ω, find a multiset

s(α) = {c(β) | β ∈ Ω : (α, β) ∈ E (Γ)}.
3 Define a coloring c ′: c ′(α) < c ′(β)⇔ s(α) ≺ s(β).
4 Go to Step 2 if |c | 6= |c ′|; otherwise output c .

Babai–Erdös–Selkow, 1979
Almost all graphs are completely individualized (into n different
colors) after 2 rounds =⇒ for them the isomorphism problem can
be solved in linear time in n.

Bottleneck: Regular graphs (all the vertices have the same valency).
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Weisfeiler–Leman algorithm (1968)
Let Γ be a graph (directed or undirected) with vertex set Ω.

WL-algorithm
1 Set initial coloring: c(α, β) = 0, 1, or 2 depending on (α, β) is

loop, arc, or neither loop nor arc, for all (α, β) ∈ Ω× Ω.
2 For all (α, β) ∈ Ω× Ω, find a multiset

s(α, β) = {sγ(α, β) : γ ∈ Ω}, sγ(α, β) = (c(α, γ), c(γ, β)).
3 Define a coloring c ′: c ′(α, β) < c ′(γ, δ)⇔ s(α, β) ≺ s(γ, δ).
4 Go to Step 2 if |c | 6= |c ′|; otherwise output c .

The pair X = (Ω,S), where S is a partition of Ω2 into the
color classes obtained by WL-algorithm, is the WL-closure of Γ.
Aut(Γ) = Aut(X ) = {f ∈ Sym(Ω) : s f = s, s ∈ S}.
Conjecture: Orb(Aut(X )) coincides with the color classes of
the vertex set Ω, given by c(α, α), α ∈ Ω.
Conjecture is wrong (Adel’son-Vel’ski–W–L–Faradzev, 1969).
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m-dim WL-algorithm and WL-dimension
In fact, the WL-algorithm deals with any Γ = (Ω,P), where P is a
(colored) partition of Ω2.

If Γ = (Ω,P), where P is a partition of Ωm, then one can define
m-dim WL-closure WLm(Γ) of Γ using an algorithm similar to the
classical 2-dim WL-algorithm.

The WL-dimension WL(Γ) of Γ is the smallest positive integer m
such that Γ can be uniquely identified by m-dim WL-algorithm.

Kiefer–Ponomarenko–Schweitzer, 2017
If Γ is a planar graph, then WL-dim(Γ) ≤ 3.

If there is a constant c > 0 such that dimWL(Γ) ≤ c for every
finite graph Γ, then Graph ISO can be solved in time poly(n).

The notion of WL-dimension can be also formulated in the
language of the counting first order logic.
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Graphs and m-fragment of first-order logic

The language of the logic Cm, m ∈ N for graphs:
m variables x1, x2 . . . , xm

a binary predicate e(·, ·)
a symbol =; and logical connectives ∨,∧,→,¬
counting quantifiers ∃ix , i ∈ N.

Interpretation of formulas of Cm for a graph Γ:
x1, x2 . . . , xm are vertices of Γ

e(xi , xj) is true if there is an edge between xi and xj in Γ

∃ixϕ(x) — the formula ϕ(x) is true for at least i vertices of Γ

Γ |= ϕ means that ϕ holds true on Γ.

Example: Γ |= (∀x1)(∃5x2)e(x1, x2) means deg(Γ) ≥ 5.
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Cm-equivalency, WL-dimension, and Graph ISO
Graphs Γ and ∆ are Cm-equivalent, if

∀ϕ ∈ Cm : Γ |= ϕ⇐⇒ ∆ |= ϕ.

The WL-dimension dimWL(Γ) of a graph Γ is the least m such that
every graph ∆ which is Cm+1-equivalent to Γ is isomorphic to Γ.

Cai–Fürer–Immerman, 1992
There is a constant c > 0 and a family of graphs Γn of degree n,
n ∈ N, such that dimWL(Γn) ≥ cn.

Nevertheless,
Γ = (Ω,R) and Γ′ = (Ω,R ′) graphs

⇓ Weisfeiler–Leman algorithm ⇓
X = (Ω,S) and X ′ = (Ω,S ′) WL-closures of Γ and Γ′

Iso(Γ, Γ′) = Iso(X ,X ′).
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WL-closures and m-closures of permutation groups
Ω is a finite set, G ≤ Sym(Ω), and m is a positive integer

G acts componentwisely on Ωm: (α1, . . . , αm)g = (αg
1 , . . . , α

g
m)

Orbm(G ) is the set of orbits of this action (m-orbits).

Invm(G ) = (Ω,Orbm(G )) can be considered as a specific
combinatorial structure on Ω consisting of (colored) m-ary relations.

m-dim WL-closure of Invm(G ) is always Invm(G ) itself.

Definition (H.Wielandt, 1969)

The m-closure G (m) of G is the largest subgroup of Sym(Ω) with
Orbm(G (m)) = Orbm(G ).

Equivalently,

G (m) = {g ∈ Sym(Ω) : ∆g = ∆,∆ ∈ Orbm(G )} = Aut(Invm(G )).
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m-Closure problem for solvable groups

m-Closure problem

Given a permutation group G , find G (m).

Here groups are specified by list of generating permutations.

Ponomarenko-V., 2023
Given an integer m ≥ 3, the m-closure of a solvable permutation
group of degree n can be found in time nO(m).
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Properties of m-closures

It follows from the definition that

G (1) ≥ G (2) ≥ . . . ≥ G (m) ≥ . . . ≥ G (|Ω|−1) = G .

How far can G (m) be from G?

The m-closure of m-transitive group G ≤ Sym(Ω) is Sym(Ω), so
if Ω = ∆1 ∪ . . . ∪∆s︸ ︷︷ ︸

1−orbits

, then G (1) = Sym(∆1)× . . .× Sym(∆s).

Suppose m ≥ 2. Then
1 G is abelian ⇒ G (m) is abelian
2 G is of odd order ⇒ G (m) is of odd order
3 G is a p-group ⇒ G (m) is a p-group (Wielandt, 1969)
4 G is nilpotent ⇒ G (m) is nilpotent (∼ 2020).
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Solvable permutation groups

There are 2-transitive solvable groups, say, AGL(1, p)(2) = Sym(p)
for a prime p, so assuming p ≥ 5, we get

G is solvable 6⇒ G (2) is solvable.

A. Seress (1995):

If G is a solvable primitive group, then G = G (5).

E.O’Brien, I. Ponomarenko, A. V., and E. Vdovin (2021):

If m ≥ 3 and G is solvable, then G (m) is solvable.
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Babai–Lucks argument

The composition width cw(H) of a group H is the least positive
integer d such that every nonabelian composition factor of a
group H can be embedded in Sym(d).

Babai–Lucks, 1983
Let Γ = (Ω,E ) be a graph. Given H ≤ Sym(Ω) with cw(H) ≤ d ,
the group Aut(Γ) ∩ H can be constructed in time nf (d).

Corollary
Let G ≤ Sym(Ω) and m ∈ N. Given H ≤ Sym(Ω) with cw(H) ≤ d ,
the group G (m) ∩ H can be constructed in time nf (d).

G (m) ∩ H is called the relative m-closure of G with respect to H.
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Inside the proof

A class K of (abstract) groups is said to be complete if it is closed
with respect to taking subgroups, quotients, and extensions.
The class of all permutation groups of degree at most n that
belong to K is denoted by Kn.
A permutation group is said to be non-basic if it is contained in a
wreath product with the product action, and it is basic otherwise.

Let m, n ∈ N, m ≥ 3, and K a complete class of groups. Then
1 Kn is closed with respect to taking the m-closure if and only if

Kn contains the m-closure of every primitive basic group in Kn,
2 the m-closure of any group in Kn can be found in time poly(n)

by accessing oracles for finding the m-closure of every primitive
basic group in Kn and the relative m-closure of every group
in Kn with respect to any group in Kn.
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2-Closures of supersolvable groups

A group G is called supersolvable if it has a finite normal series
with cyclic factors, that is

G = G0 ≥ G1 ≥ . . . ≥ Gn−1 ≥ Gn = 1,

where Gi E G and Gi/Gi−1 is cyclic for every i = 1, . . . , n.

The problem is that

Composition factors of the 2-closure of every supersolvable
permutation group G are cyclic or alternating groups.

Ponomarenko–V., 2020
The 2-closure problem for a supersolvable permutation group G of
degree n can be solved in time poly(n).
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Key ingredients of the proof

1 Embedding of G in a large solvable group H

2 Constructing of the relative closure K of G inside H via the
Babai–Lucks algorithm

3 Finding the certificates XS (the sets of generators) of
nonsolvable primitive sections S of the closure K (2) of K

4 Putting X =
⋃

XS and setting G (2) = 〈K ,X 〉.

The same idea can be possibly applied to the general case of the
m-closure problem.
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Group isomorphism problem

Group ISO
For groups G and H given by their multiplicative tables, test
whether Iso(G ,H) = ∅.

Graph ISO ⇒ Group ISO.

Group ISO can be solved in time nO(log n).

J. Brachter and P. Schweitzer (2020): WL-dimension for groups.

There is no an analog of Cai–Fürer–Immerman theorem for groups.

J. Brachter and P. Schweitzer (2022)
If G is indistinguishable from H by 5-dim WL-algorithm, then G
and H have the same composition factors.
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